Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thế này hả bạn, dịch mãi mới ra:
Cho \(\int\limits^{x^2}_0f\left(t\right)dt=x.cos\left(\pi x\right)\), tính \(f\left(4\right)\)?
Giải:
Đạo hàm hai vế ta được:
\(f\left(x^2\right).\left(x^2\right)'=\left(x.cos\left(\pi x\right)\right)'\)
\(\Leftrightarrow2x.f\left(x^2\right)=cos\left(\pi x\right)-\pi x.sin\left(\pi x\right)\)
Thay \(x=2\) vào ta được:
\(4.f\left(4\right)=cos\left(2\pi\right)-2\pi.sin\left(2\pi\right)\)
\(\Rightarrow4.f\left(4\right)=1\Rightarrow f\left(4\right)=\dfrac{1}{4}\)
Hôm bữa bên CLB của ĐH Bách Khoa Hồ Chí Minh có tổ chức ấy bạn, cơ mà chắc hết rùi :D Btw, có thầy gì admin page Luyện thi đánh giá năng lực hồi năm ngoái mình có follow thấy thầy cũng tổ chức thường xuyên lắm nè :v
\(f\left(x\right)+g\left(x\right)=-x\left[f'\left(x\right)+g'\left(x\right)\right]\)
Đặt \(h\left(x\right)=f\left(x\right)+g\left(x\right)\Rightarrow\left\{{}\begin{matrix}h\left(1\right)=4\\h\left(x\right)=-x.h'\left(x\right)\end{matrix}\right.\)
\(\Rightarrow\frac{h'\left(x\right)}{h\left(x\right)}=-\frac{1}{x}\Rightarrow\int\frac{h'\left(x\right)}{h\left(x\right)}dx=-\int\frac{dx}{x}=-lnx\)
\(\Rightarrow ln\left[h\left(x\right)\right]=ln\left(\frac{1}{x}\right)+C\)
Thay \(x=1\Rightarrow C=ln4\Rightarrow ln\left[h\left(x\right)\right]=ln\left(\frac{1}{x}\right)+ln4=ln\left(\frac{4}{x}\right)\)
\(\Rightarrow h\left(x\right)=\frac{4}{x}\)
\(\Rightarrow I=\int\limits^4_1h\left(x\right)dx=\int\limits^4_1\frac{4}{x}dx=...\)
cho em hỏi tại sao h(x) =\(\frac{4}{x}\) mà ko phải là |h(x)| vậy ạ?
Bạn coi lại đề bài, có gì đó không ổn
Thay \(x=1\) vào \(g\left(x\right)=-x.f\left(x\right)\) \(\Rightarrow g\left(1\right)=-f\left(1\right)\)
\(\Rightarrow f\left(1\right)+g\left(1\right)=0\) trái với điều kiện \(f\left(1\right)+g\left(1\right)=4\)????
dạ em viết nhầm, phải là g(x)=-xf'(x) f(x)=-xg'(x) mới đúng
1222222222222222222222kg = 1222222222222222222222000g nhé HT
Спасибо