Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{đặt }A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2016^2}\)
\(A=\frac{1}{2^2}.\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{1008^2}\right)\)
\(A< \frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1007.1008}\right)\)
\(A< \frac{1}{4}.\left(1+1-\frac{1}{2007}\right)< \frac{1}{4}.2=\frac{1}{2}\Rightarrow A< \frac{1}{2}\left(ĐPCM\right)\)
Thêm buổi sáng 20/09/2019 nha . Các bạn giải giúp mình . Cảm ơn 😢
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}\)\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{-16}{-80}=\frac{1}{5}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{1}{5}.64=12,8\\y^2=\frac{1}{5}.144=28,8\\z^2=\frac{1}{5}.225=45\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\pm\sqrt{12,8}\\y=\pm\sqrt{28,8}\\z=\pm\sqrt{45}\end{cases}}\)
Với \(x=\sqrt{12,8}\Rightarrow\hept{\begin{cases}y=\sqrt{28,8}\\z=\sqrt{45}\end{cases}}\)
Với \(x=-\sqrt{12,8}\Rightarrow\hept{\begin{cases}y=-\sqrt{28,8}\\z=-\sqrt{45}\end{cases}}\)
\(\frac{1}{2}.3+\frac{1}{3}.4+...+\frac{1}{19}.20\)
\(=\frac{3}{2}.\frac{4}{3}......\frac{20}{19}\)
\(=\frac{3.4.5....20}{2.3.4...19}\)
\(=\frac{20}{2}=10\)
\(\frac{1}{2}\times3+\frac{1}{3}\times4+\frac{1}{4}\times5+...+\frac{1}{19}\times20\)
\(=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times...\times\frac{20}{19}\)
\(=\frac{3\times4\times5\times...\times20}{2\times3\times4\times...\times19}\)
\(=\frac{20}{2}\)
\(=10\)