K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2016

1/2.2 < 1/1.2

1/3.3 < 1/2.3

..................

1/100.100 < 1/99.100 

=> <

2 tháng 5 2016

Ta có: \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)

\(\frac{1}{2^2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}<\frac{1}{2.3}\)

\(\frac{1}{4^2}<\frac{1}{3.4}\)

.....

\(\frac{1}{100^2}<\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}<1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<1\left(đpcm\right)\)

14 tháng 1

rút gọn

2 tháng 5 2020

Ta có : \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)(đpcm)

+)Ta thấy:\(\frac{1}{2.2}< \frac{1}{1.2}\)

                   \(\frac{1}{3.3}< \frac{1}{2.3}\)

                     ............................

                     ..............................

                  \(\frac{1}{100.100}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...............+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+............+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...............+\frac{1}{100.100}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..............+\frac{1}{99}-\frac{1}{100}< 1\)

\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+.............+\frac{1}{100.100}< 1\left(\text{Đ}PCM\right)\)

Chúc bạn học tốt

7 tháng 11 2023

Ta có :

Đặt A=1.1+2.2+3.3+....+100.100

=>A=1.(2-1)+2.(3-1)+3.(4-1)+.....+100.(101-1)

=>A=1.2-1+2.3-2+3.4-3+.....+100.101-100

=>A=1.2+2.3+3.4+...+100.101-(1+2+3+....+100)

Đặt B=1.2+2.3+3.4+...+100.101

=>3B=1.2.3+2.3.3+3.4.3+.....+100.101.3

=>3B=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+100.101.(102-99)

=>3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+99.100.101+100.101.102-99.100.101

=>3B=100.101.102

=>B=343400

Đặt C=1+2+3+4+5+.....+100=(1+100).100:2=5050

=>A=343400-5050=338350

cho mk 1 tích nha

7 tháng 11 2023

Ta có :

Đặt A=1.1+2.2+3.3+....+100.100

=>A=1.(2-1)+2.(3-1)+3.(4-1)+.....+100.(101-1)

=>A=1.2-1+2.3-2+3.4-3+.....+100.101-100

=>A=1.2+2.3+3.4+...+100.101-(1+2+3+....+100)

Đặt B=1.2+2.3+3.4+...+100.101

=>3B=1.2.3+2.3.3+3.4.3+.....+100.101.3

=>3B=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+100.101.(102-99)

=>3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+99.100.101+100.101.102-99.100.101

=>3B=100.101.102

=>B=343400

Đặt C=1+2+3+4+5+.....+100=(1+100).100:2=5050

=>A=343400-5050=338350

Học tốt<3

số số hạng là:

(100.100-1.1):1+1=100(số hạng)

E=(100.100+1.1)*100:2=5060

k mình nhé m.n

17 tháng 7 2019

E = 1 . 1 + 2 . 2 + 3 . 3 + 4 . 4 + ... + 100 . 100

E = 1 . (2 - 1) + 2 . (3 - 1) + 3 . (4 - 1) + 4 . (5 - 1) + ... + 100 . (101 - 1)

E = (1 . 2 + 2 . 3 + 3 . 4 + 4 . 5 + ... + 100 . 101) - (1 + 2 + 3 + 4 + ... + 100)

E = \(\frac{100\times101\times102}{3}-\frac{100\times101}{2}\)

E = 343400 - 5050

E = 338350

Tham khảo link : https://olm.vn/hoi-dap/detail/100101022310.html

~Study well~

#KSJ

9 tháng 5 2022

\(< \dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\left(đpcm\right)\)

 

9 tháng 5 2022

sai đề

 

30 tháng 12 2015

E= 1.1+2.2+3.3+4.4+....+100.100

E= (1.2.3.4.5.6...100)^2

30 tháng 12 2015

Chả khó tí nào, chỉ rất khó thôi!