K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 12 2022

Lời giải:

Gọi vế trái là $A$

$2A=\frac{2}{2^2}+\frac{2}{4^2}+\frac{2}{6^2}+...+\frac{2}{2022^2}$

Xét số hạng tổng quát:

$\frac{2}{n^2}$. Ta sẽ cm $\frac{2}{n^2}< \frac{1}{(n-1)n}+\frac{1}{n(n+1)}(*)$

$\Leftrightarrow \frac{2}{n^2}< \frac{n+1+n-1}{n(n-1)(n+1)}$

$\Leftrightarrow \frac{2}{n^2}< \frac{2}{(n-1)(n+1)}$

$\Leftrightarrow \frac{2}{n^2}< \frac{2}{n^2-1}$ (luôn đúng)

Thay $n=2,4,...., 2022$ vào $(*)$ ta có:

$\frac{2}{2^2}< \frac{1}{1.2}+\frac{1}{2.3}$

$\frac{2}{4^2}< \frac{1}{3.4}+\frac{1}{4.5}$

.......

Suy ra: $2A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2022.2023}$

$2A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2022}-\frac{1}{2023}$

$2A< 1-\frac{1}{2023}< 1$

$\Rightarrow A< \frac{1}{2}$

7 tháng 10 2017

Ta có \(\frac{1}{5^2}>\frac{1}{5\times6}\)

Tương tự với các cái còn lại

\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+.....+\frac{1}{100^2}>\frac{1}{5\times6}+.....+\frac{1}{100\times101}\)

\(\frac{1}{5\times6}=\frac{1}{5}-\frac{1}{6}....\\ \)

\(\Rightarrow\frac{1}{5\times6}+.....+\frac{1}{100\times101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{5}-\frac{1}{101}\)

\(\frac{1}{101}< \frac{1}{30}\Rightarrow\frac{1}{5}-\frac{1}{100}>\frac{1}{5}-\frac{1}{30}=\frac{1}{6}\)

\(\Rightarrow\)DCMM vế 1

6 tháng 8 2019

Tick và theo dõi mik nhá!

Tham khảo: bài 3

Lũy thừa của một số hữu tỉ

6 tháng 8 2019
https://i.imgur.com/e81eWkc.jpg
5 tháng 9 2020

Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{1990.1990}\)

\(< \frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}\)

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\left(\text{đpcm}\right)\)

5 tháng 9 2020

                Bài làm :

Ta có :

 \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}\)

\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{1990.1990}< \frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}=\frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}\)

\(\text{Vì : }\frac{1}{1990}>0\Rightarrow\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)

=> Điều phải chứng minh

1 tháng 11 2024

J