Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2 + 1/4 + 1/8 + … + 1/128
= 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + … + 1/64 - 1/128
= 1 - 1/128
= 128/128 - 1/128
= 127/128
Chúc bạn học tốt.
😁😁😁
A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\)+ \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)+ \(\dfrac{1}{64}\)+ \(\dfrac{1}{128}\)
A\(\times\)2 = 2 + 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\)
A \(\times\) 2 - A = 2 - \(\dfrac{1}{128}\)
A \(\times\)( 2-1) = \(\dfrac{255}{128}\)
A = \(\dfrac{255}{128}\)
Gọi \(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\) là T
\(T=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)
\(2T=2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{64}\)
\(2T-T=\left(2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{64}\right)-\left(1+\dfrac{1}{2}+....+\dfrac{1}{64}+\dfrac{1}{128}\right)\)
\(T=2+\left(1-1\right)+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+....+\left(\dfrac{1}{64}-\dfrac{1}{64}\right)-\dfrac{1}{128}\)
\(T=2+0+0+...-\dfrac{1}{128}\)
\(T=\dfrac{256}{128}-\dfrac{1}{128}\)
\(T=\dfrac{255}{128}\)
a, 2/3+1/2+1/6
=4/6+3/6+1/6
=4/3
b, 5/12+5/6-3/4
=10/24+20/24-18/24
=1/2
c, 1/3*3/5*2/5
=(1*3*2)/(3*5*5)
=2/25
d, 15/16:3/8*3/4
= 15/16*8/3*3/4
= 15/8
a) \(\frac{2}{3}\)+\(\frac{1}{2}\)+\(\frac{1}{6}\) = \(\frac{4}{6}\)+\(\frac{3}{6}\)+\(\frac{1}{6}\) =\(\frac{8}{6}\) =\(\frac{4}{3}\)
b)\(\frac{5}{12}+\frac{5}{6}-\frac{3}{4}\)=\(\frac{5}{12}+\frac{10}{12}-\frac{9}{12}\)=\(\frac{6}{12}\)= \(\frac{1}{2}\)
c) \(\frac{1}{3}\cdot\frac{3}{5}\cdot\frac{2}{5}\) =\(\frac{6}{75}\)=\(\frac{2}{25}\)
1/2* x+2/3=9/2
1/2 * x = 9/2 - 2/3
1/2 * x= 23/6
x= 23/6 : 1/2
x= 23/6 x 2= 23/3
___
1/2*x-1/3=2/3
1/2*x = 2/3 + 1/3
1/2 * x= 1
x= 1: 1/2
x= 2
____
1/4+3/4:x=3
3/4 : x = 3 - 1/4
3/4 : x= 11/4
x= 11/4 : 3/4
x= 11/3
\(\dfrac{1}{2}\)\(\times\)\(x\) + \(\dfrac{2}{3}\) = \(\dfrac{9}{2}\)
\(\dfrac{1}{2}\)\(\times\)\(x\) = \(\dfrac{9}{2}\) - \(\dfrac{2}{3}\)
\(\dfrac{1}{2}\)\(\times\)\(x\) = \(\dfrac{23}{6}\)
\(x\) = \(\dfrac{23}{6}\):\(\dfrac{1}{2}\)
\(x\) = \(\dfrac{23}{3}\)
\(\dfrac{1}{2}\)\(\times\)\(x\) - \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)
\(\dfrac{1}{2}\)\(\times\)\(x\) = \(\dfrac{2}{3}\) + \(\dfrac{1}{3}\)
\(\dfrac{1}{2}\times\)\(x\) = 1
\(x\) = 1 : \(\dfrac{1}{2}\)
\(x\) = 2
\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\): \(x\) = 3
\(\dfrac{3}{4}\): \(x\) = 3 - \(\dfrac{1}{4}\)
\(\dfrac{3}{4}\):\(x\) = \(\dfrac{11}{4}\)
\(x\) = \(\dfrac{3}{4}\): \(\dfrac{11}{4}\)
\(x\) = \(\dfrac{3}{11}\)
mk chỉnh lại đề
\(A=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}....\frac{99}{100}\)
\(=\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}.\frac{5^2-1}{5^2}....\frac{10^2-1}{10^2}\)
\(=\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}.....\frac{9.11}{10^2}\)
\(=\frac{2.3.4...9}{3.4.5...10}.\frac{4.5.6...11}{3.4.5...10}\)
\(=\frac{2}{10}.\frac{11}{3}=\frac{11}{15}\)
ta có: \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{x}.\)
\(A=1+\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2.2.2}+...+\frac{1}{x}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2.2}+...+\frac{1}{x:2}\)
\(\Rightarrow2A-A=2-\frac{1}{x}\)
\(A=2-\frac{1}{x}=\frac{4095}{2048}\)
=> 1/x = 1/2048
=> x = 2048 ( 2048 = 211 )
\(2A=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{2}{x}\)
=> \(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{2}{x}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{2}{x}+\frac{1}{x}\right)\)
=> \(A=2-\frac{1}{x}\)
Giải phương trình:
\(2-\frac{1}{x}=\frac{4095}{2048}\)
\(\frac{1}{x}=2-\frac{4095}{2048}\)
\(\frac{1}{x}=\frac{1}{2048}\)
x=2048
Trả lời:
1/2+1/4+1/8+1/16=8/16+4/16+2/16+1/16=15/16 (1)
1/2+1/6+1/12+...+1/132=1/(1.2)+1/(2.3)+1/(3.4)+...+1/(11.12)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/11-1/12)
=1-1/12=11/12 (2)
Từ (1) và (2) => (15/16) : (11/12) = 45/44