Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...=2\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...\right)=2+2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...\right)\)(đó cũng là S)
\(\Rightarrow S=2+2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...\right)\Leftrightarrow S=2+2S\Rightarrow S=2\)
Vậy khi tổng S kéo dài mãi mãi thì kết quả của chúng là 2
Nếu kéo dài mãi mãi thì lm sao tìm đc đáp số chứ.
Để giải đc thì tổng chỉ cs thể là 1/2+1/4+1/8+1/16+1/32+...+1/(n:2) + 1/n
Gọi giá trị biểu thức trên là A=1/2+1/4+1/8+1/16+1/32+...+1/(n:2) + 1/n
A x 2 = 1 + 1/2+1/4+1/8+1/16+1/32+...+1/(n:4) + 1/(n:2)
A = A x 2 - A = 1 + 1/2 - 1/2 + 1/4 - 1/4 + 1/8 - 1/8 + 1/16 - 1/16 + 1/32 - 1/32 + ...+1/(n:2) - 1/(n:2) - 1/n
A = 1 - 1/n
Kéo dài mãi mãi nghĩa là không có điểm dừng,nghĩa là:
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+.....\)\(=\)\(\frac{1+2+4+8+16+........}{\infty}\)\(=\)\(\frac{\infty}{\infty}\)
Không có điểm dừng chẳng khác gì dãy số tự nhiên và bằng N hoặc \(\infty\)cả.
Chúng ta có thể đặt biểu thức trên bằng S, lấy số cuối là 1/infinity và tính giá trị của nó bằng 2S-S=1-1/infinity.
= kết quả là số thập phân
mình chỉ biết như vậy thôi
bạn cho mình tk nha
#)Giải :
Đặt \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{3^n}\left(n\in N\right)\)
\(\Rightarrow A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^n}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^n}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^n}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^n}}{2}\)
S1 S2 S3 S4 A B C D
Giả sử ABCD là một hình vuông có cạnh là 1 đơn vị. Diện tích hình đó là 1.
Diện tích hình chữ nhật S1 bằng \(\frac{1}{3}\) hình vuông nên có diện tích là:
S1 = \(\frac{1}{3}\)
Chia ba phần còn lại của hình vuông ABCD, ta được hình vuông S2. Diện tích hình S2 bằng\(\frac{1}{9}\)hình vuông ABCD nên:
S2 = \(\frac{1}{9}\)
Tiếp tục chia ba phần con lại của của hình vuông ABCD, ta được hình chữ nhật S3 có diện tích:
S3 = \(\frac{1}{27}\)
Tiếp tục làm như thế và cộng lại, ta có:
S1 + S2 + S3 + S4 + S5 + S6 + ... = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+...\)
Như vậy càng kéo dài tổng diện tích của các hình đó thì tổng ấy sẽ tiến dần đến diện tích hinh vuông ABCD, hay nói cách khác:
S1 + S2 + S3 + S4 + S5 + S6 + ... = SABCD
hoặc \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+...\)= 1
keo dai mai mai