K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2022

`1/2xx1/2xx1/2xx1/2xx1/2`

`=(1xx1xx1xx1xx1xx1)/(2xx2xx2xx2xx2xx2)`

`=1/64`

8 tháng 6 2022

\(\dfrac{1}{2}.\dfrac{1}{2}.\dfrac{1}{2}.\dfrac{1}{2}.\dfrac{1}{2}=\dfrac{1}{32}\)

7 tháng 6 2016

mình sẽ k cho 3 bạn làm nhanh nhất nhé , giúp mình nha các bạn. thanks các bạn nhé

25 tháng 3 2022

\(=\dfrac{3}{2}\)

26 tháng 6 2017

a) \(\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{99}-\left(\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

đặt \(A=\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)

\(A=1-\frac{1}{99}\)

\(A=\frac{98}{99}\)

thay A vào, ta được :

\(\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)

b) \(\frac{2}{100.99}-\frac{2}{99.98}-...-\frac{2}{3.2}-\frac{2}{2.1}\)

\(=\frac{2}{100.99}-\left(\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\right)\)

đặt \(A=\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\)

\(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{98.99}\)

\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)

\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)

\(A=2.\left(1-\frac{1}{99}\right)\)

\(A=2.\frac{98}{99}\)

\(A=\frac{196}{99}\)

Thay A vào, ta được :

\(\frac{2}{100.99}-\frac{196}{99}=\frac{-19598}{9900}\)

2 tháng 1 2017

đề như thế này mới đúng bạn ơi

\(P=\frac{1}{2000.1999}-\frac{1}{1999.1998}-...-\frac{1}{1.2}TínhP+\frac{1997}{1999}\)

14 tháng 7 2023

Đề: \( \dfrac{ 1 ^ { 2 } \times a ^ { 3 } }{ a ^ { ^ { 2 } } \times 1 ^ { 2 } } \)

\(=\dfrac{1\times a^3}{a^2\times1}\)

\(=\dfrac{a^3}{a^2}\)

\(=\dfrac{a^1}{1}\)

\(=a\)

17 tháng 8 2018

\(3^2\cdot\frac{1}{243}\cdot81^2\cdot\frac{1}{3^3}\)

\(=\frac{3^2}{3^3}\cdot\frac{81\cdot81}{81\cdot3}\)

\(=\frac{1}{3}\cdot\frac{27}{1}\)

\(=9=\left(\pm3\right)^2\)

17 tháng 8 2018

\(a,3^2\cdot\frac{1}{243}=3^2\cdot\frac{1}{3^5}=\frac{1}{3^3}=\frac{1^3}{3^3}=\left(\frac{1}{3}\right)^3\)

\(b,81^2\cdot\frac{1}{3^3}=\left(3^4\right)^2\cdot\frac{1}{3^3}=3^8\cdot\frac{1}{3^3}=3^5\)

17 tháng 8 2018

a) \(3^2.\frac{1}{243}=\frac{1.3^3}{243}=\frac{3^2}{243}=\frac{3^2}{3^5}=\frac{1}{3^3}=\frac{1}{27}\)

b) \(81^2.\frac{1}{3^3}=\frac{1.81^2}{3^3}=\frac{81^2}{3^3}=\frac{3^8}{3^3}=3^5=243\)