Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
the only
jjjjjji8hgjkoljjimkkpllkkkkkkllkkkkklkI-ol0loookkkkokpplplkoo
(1 + \(\dfrac{1}{49}\))\(\times\)(1 + \(\dfrac{1}{50}\))\(\times\)(1 + \(\dfrac{1}{51}\))\(\times\)(1 + \(\dfrac{1}{52}\))\(\times\)...\(\times\)(1 + \(\dfrac{1}{60}\))
= \(\dfrac{49+1}{49}\) \(\times\) \(\dfrac{50+1}{50}\)\(\times\) \(\dfrac{51+1}{51}\)\(\times\)\(\dfrac{52+1}{52}\)\(\times\)...\(\times\)\(\dfrac{61}{60}\)
= \(\dfrac{50}{49}\)\(\times\)\(\dfrac{51}{50}\)\(\times\)\(\dfrac{52}{51}\)\(\times\)...\(\times\)\(\dfrac{61}{60}\)
= \(\dfrac{50\times51\times52\times53\times...\times60}{50\times51\times52\times53\times...\times60}\)\(\times\)\(\dfrac{61}{49}\)
= \(\dfrac{61}{49}\)
giúp mình đi khi nào bạn làm đúng thì mình sẽ thả like cho bạn
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=1-\dfrac{1}{8}=\dfrac{7}{8}\)
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{10}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{9}{10}\)
\(=\frac{1}{10}\)
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{9}{10}\)
\(=\frac{1.2.3....9}{2.3.4...10}=\frac{1}{10}\)
Ủng hộ mk nha !!! ^_^