Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2/3
=> 1-1/2+1/2-1/3+1/3-1/4+...+1/x-1/x+1=2/3
=>1-1/x+1=2/3
=>1/x+1=1/3
=>3=x+1
=>x=2
Ta có\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{3}\)
=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{3}\)
=>\(1-\frac{1}{x+1}=\frac{2}{3}\)
=>\(\frac{1}{x+1}=1-\frac{2}{3}\)
=>\(\frac{1}{x+1}=\frac{1}{3}\)
=>\(x+1=3\)
=>\(x=2\)
a)
`1/1-1/2`
`=2/2-1/2`
`=1/2`
b)
`1/(1*2)+1/(2*3)`
`=1/1-1/2+1/2-1/3`
`=1/1-1/3`
`=3/3-1/3`
`=2/3`
c)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)
d)
\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?
\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2022}\)
=>x+1=2022
hay x=2021
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)
\(\Leftrightarrow\frac{9}{10}.100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}\right]=89\)
\(\Leftrightarrow90-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}\right]=89\)
\(\Leftrightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}=90-89=1\)
\(\Leftrightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right)=1.\frac{1}{2}=\frac{1}{2}\)
\(\Leftrightarrow x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}\)
\(\Leftrightarrow x+\frac{103}{50}=\frac{5}{2}.2\)
\(\Leftrightarrow x+\frac{103}{50}=5\)
\(\Leftrightarrow x=5-\frac{103}{50}\)
\(\Leftrightarrow x=\frac{250}{50}-\frac{103}{50}\)
\(\Leftrightarrow x=\frac{147}{50}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(x-1\right)x}=2\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{x-1}-\frac{1}{x}=2\)
suy ra \(1-\frac{1}{x}=2\)
hay \(\frac{x-1}{x}=2\) .suy ra x-1=2x .tính ra ta có x=-1
(1 - \(\dfrac{1}{2}\)).(1 - \(\dfrac{1}{3}\))....(1- \(\dfrac{1}{2022}\)).\(x\) = 1 - \(\dfrac{1}{1.2}\) - \(\dfrac{1}{2.3}\)-...-\(\dfrac{1}{2002.2003}\)
(\(\dfrac{2-1}{2}\)).(\(\dfrac{3-1}{3}\))...(\(\dfrac{2022-1}{2022}\)).\(x\) = 1 - (\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2002.2003}\))
\(\dfrac{1}{2}\).\(\dfrac{2}{3}\)...\(\dfrac{2021}{2022}\).\(x\) = 1 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+ ... + \(\dfrac{1}{2002}\) - \(\dfrac{1}{2003}\))
\(\dfrac{1}{2022}\).\(x\) = 1 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{2003}\))
\(\dfrac{1}{2022}\).\(x\) = \(\dfrac{1}{2003}\)
\(x\) = \(\dfrac{1}{2003}\) : \(\dfrac{1}{2022}\)
\(x\) = \(\dfrac{2022}{2003}\)
\(\frac{1}{2.x}-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{45.46}=-2\)
\(\frac{1}{2.x}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{45.46}\right)=-2\)
\(\frac{1}{2.x}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{45}-\frac{1}{46}\right)=-2\)
\(\frac{1}{2.x}-\left(1-\frac{1}{46}\right)\)
\(\frac{1}{2.x}-\frac{45}{46}=-2\)
\(\frac{1}{2.x}=-2+\frac{45}{46}\)
\(\frac{1}{2.x}=\frac{-47}{46}\)
\(2x=\frac{46}{-47}\)
\(x=\frac{46}{-47}:2=\frac{-23}{47}\)
\(x\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ x\cdot\left(1-\dfrac{1}{50}\right)=1\\ \dfrac{49}{50}x=1\\ x=1:\dfrac{49}{50}\\ x=\dfrac{50}{49}\)
\(\frac{1}{2.x}-\frac{1}{1.2}-\frac{1}{2.3}-......-\frac{1}{45.46}=-2\)2
\(\frac{1}{2.x}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{45.46}\right)=-2\)
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{45.46}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{45}-\frac{1}{46}\)
\(A=1-\frac{1}{46}=\frac{45}{46}\)
Ta có: \(\frac{1}{2.x}-\frac{45}{46}=-2\)
\(\frac{1}{2.x}=\frac{-47}{46}\)
\(\frac{-47}{-94.x}=\frac{-47}{46}\)
\(\Rightarrow x=\frac{-23}{47}\)