Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Ta có:
\(n+8⋮n+3\)
\(\Rightarrow\left(n+3\right)+5⋮n+3\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\in\left\{1;5\right\}\) ( vì n là số tự nhiên )
+) \(n+3=1\Rightarrow n=-2\) ( loại )
+) \(n+3=5\Rightarrow n=2\) ( chọn )
Vậy n = 2
b) Ta có:
\(n+6⋮n-1\)
\(\Rightarrow\left(n-1\right)+7⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\in\left\{1;7\right\}\) ( vì n là số tự nhiên )
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=7\Rightarrow n=8\)
Vậy n = 2 hoặc n = 8
c) Ta có:
\(4n-5⋮2n-1\)
\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
\(\Rightarrow-3⋮2n-1\)
\(\Rightarrow2n-1\in\left\{1;3\right\}\) ( vì n là số tự nhiên )
+) \(2n-1=1\Rightarrow n=1\)
+) \(2n-1=3\Rightarrow n=2\)
Vậy n = 1 hoặc n = 2
a) \(n+8⋮n+3\)
\(\Leftrightarrow\left(n+3\right)+5⋮n+3\)
Vậy để n+8 chia hết cho n+3 thì: n+3 thuộc Ư(5)
Mà Ư(5)={-1;1;5;-5}
=>n+3={1;-1;5;-5}
+)n+3=1<=|>n=-2
+)n+3=-1<=>n=-4
+)n+3=5<=>n=2
+)n+3=-5<=>n=-8
Vậy n={-8;-4;-2;2}
b) n+6 chia hết cho n-1
<=> (n-1)+7 chia hết cho n-1
Vậy để n+6 chia hết cho n-1 thì : n-1 thuộc Ư(7)
Mà: Ư(7)={1;-1;7;-7}
=> n-1={-1;1;7;-7}
+) n-1=1<=>n=2
+)n-1=-1<=>n=0
+)n-1=7<=>n=8
+)n-1=-7<=>n=-6
Vậy n={-6;0;2;8}
c) 4n-5 chia hết cho 2n-1
<=> 2(2n-1)-5 chia hết cho 2n-1
Để 4n-5 chia hết cho 2n-1 thì 2n-1 thuộc Ư(5)
Mà Ư(5)={1;-1;5;-5}
=>2n-1={1;-1;5;-5}
+)2n-1=-1<=>n=0
+)2n-1=1<=>n=1
+)2n-1=5<=>n=3
+)2n-1=-5<=>n=-2
Vậy n={-2;0;1;3)
d) TT
a) \(\frac{4n+3}{2n+1}=\frac{4n+2+1}{2n+1}=2+\frac{1}{2n+1}\)
Để có phép chia hết thì \(1⋮2n+1\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
b) \(\frac{3n-5}{4n+8}=\frac{3n+6-11}{4n+8}=\frac{3}{4}-\frac{11}{4n+8}\)
Để có phép chia hết thì \(11⋮4n+8\Leftrightarrow4n+8\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
c) \(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=1+\frac{4}{n-1}\)
Để có phép chia hết thì \(4⋮n-1\Leftrightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
d) \(\frac{3n+1}{11-n}=\frac{3n-33+34}{11-n}=-1+\frac{34}{11-n}\)
Để có phép chia hết thì \(34⋮11-n\Leftrightarrow11-n\inƯ\left(34\right)=\left\{\pm1;\pm2;\pm17;\pm34\right\}\)
Lập bảng xét giá trị cho từng trường hợp
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
n + 8 chia hết cho n + 3
=> n + 3 + 5 chia hết cho n + 3
=> n + 3 thuộc Ư ( 5 )
=> n + 3 = { 1 , - 1 , 5 , -5 )
=> n = { -2 , - 4 , 2 , -8 }
mấy câu kia tương tự
4n - 5 chia hết cho 2n + 1
=> 4n + 2 - 7 chia hết cho 2n + 1
Mà 4n + 2 chia hết cho 2n + 1
=> -7 chia hết cho 2n + 1
a)4n-5 chia hết cho 2n+1
=>4n+2-7 chia hết cho 2n-1
=>-7 chia hết cho 2n-1
=> 2n+1 thuộc vào tập hợp Ư(7)=(1;-1;7;-7)
ta có bảng sau
2n+1 | 1 | -1 | 2 | -2 |
n | 0 | -19 loại | 1/2(loại) | 3/2(loại) |
vậy..................................................................................................................
b) 12- n chia hết cho 8-n
=>4+8- n chia hết cho 8-n
=>8-n thuộc Ư(4)=(1;-1;2;-2;4;-4)
ta có bảng sau:
8-n | 1 | -1 | 2 | -2 | 4 | -4 |
n | 7 | 9 | 6 | 10 | 4 | 12 |
vậy.....................................................................................................................
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5
\(a,\Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ b,\Rightarrow n+3+5⋮n+3\\ \Rightarrow5⋮n+3\\ \Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ c,\Rightarrow2\left(2n-1\right)-3⋮2n-1\\ \Rightarrow3⋮2n-1\\ \Rightarrow2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-1;0;1;2\right\}\\ d,\Rightarrow8-n+4⋮8-n\\ \Rightarrow4⋮8-n\\ \Rightarrow8-n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow n\in\left\{12;10;9;7;6;4\right\}\)