K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\sqrt{25x+75}+2\sqrt{9x+27}=5\sqrt{x+3}+18\)

\(\Leftrightarrow5\sqrt{x+3}+6\sqrt{x+3}-5\sqrt{x+3}=18\)

\(\Leftrightarrow\sqrt{x+3}=3\)

\(\Leftrightarrow x+3=9\)

hay x=6

b) Ta có: \(\sqrt{4x-8}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)

\(\Leftrightarrow2\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=8\)

\(\Leftrightarrow-3\sqrt{x-2}=8\)(Vô lý)

10 tháng 4 2021

a) x^2 - 3x + 2 = 0

\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=1\)

=> pt có 2 nghiệm pb

\(x_1=\frac{-\left(-3\right)+1}{2}=2\)

\(x_2=\frac{-\left(-3\right)-1}{2}=1\)

10 tháng 4 2021

a) Dễ thấy phương trình có a + b + c = 0 

nên pt đã cho có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 2

b) \(\hept{\begin{cases}x+3y=3\left(I\right)\\4x-3y=-18\left(II\right)\end{cases}}\)

Lấy (I) + (II) theo vế => 5x = -15 <=> x = -3

Thay x = -3 vào (I) => -3 + 3y = 3 => y = 2

Vậy pt có nghiệm ( x ; y ) = ( -3 ; 2 )

10 tháng 11 2018

\((x+1)(x+2)(x+4)(x+8)=28x^2\)

\(\Leftrightarrow\text{(x}^2+6\text{x}+8)(\text{x}^2+9\text{x}+8)=28\text{x}^2\)                             \((1)\)

Thấy x = 0 không là nghiệm của \((1)\). Chia \((2)\)vế \((1)\)cho \(\text{x}^2\)ta được :

\((1)\Leftrightarrow(\text{x}+\frac{8}{\text{x}}+6)(\text{x}+\frac{8}{9}+9)=28\)

Đặt \(\text{t}=\text{x}+\frac{8}{\text{x}}\). Ta có :

\((1)\Leftrightarrow(\text{t}+6)(\text{t}+9)=28\)

\(\Leftrightarrow\text{t}^2+15\text{t}+26=0\Leftrightarrow\orbr{\begin{cases}\text{t}=-2\\\text{t}=-13\end{cases}}\)

  • Với \(\text{t}=-2\)\(\Rightarrow\text{x}+\frac{8}{\text{x}}=-2\Leftrightarrow\text{x}^2+2\text{x}+8=0\Leftrightarrow(\text{x}+1)^2+7>0\)\((\)vô nghiệm\()\)
  • Với \(t=-13\Rightarrow x+\frac{8}{x}=-13\Leftrightarrow x^2+13x+8=0\)

\(\Delta=13^2-4(1\cdot8)=137\Rightarrow x_{1,2}=\frac{-13\pm\sqrt{137}}{2}\)\((\)thỏa mãn\()\)

Vậy : 

10 tháng 11 2018

TL bạn cho mình hỏi là ở chỗ chia 2 về (1) cho \(x^2\) sao lại ra cái phần dưới vậy

a: ĐKXĐ: x>=3

Sửa đề: \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\)

=>\(2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}-3=0\)

=>\(\dfrac{3}{2}\sqrt{x-3}=3\)

=>\(\sqrt{x-3}=2\)

=>x-3=4

=>x=7(nhận)

b: ĐKXĐ: x>=0

\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< =-\dfrac{3}{4}\)

=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{3}{4}< =0\)

=>\(\dfrac{4\sqrt{x}-8+3\sqrt{x}+3}{4\left(\sqrt{x}+1\right)}< =0\)

=>\(7\sqrt{x}-5< =0\)

=>\(\sqrt{x}< =\dfrac{5}{7}\)

=>0<=x<=25/49

c: ĐKXĐ: x>=5

\(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)

=>\(3\sqrt{x-5}-14\cdot\dfrac{\sqrt{x-5}}{7}+\dfrac{1}{4}\cdot2\cdot\sqrt{x-5}=3\)

=>\(\dfrac{3}{2}\sqrt{x-5}=3\)

=>\(\sqrt{x-5}=2\)

=>x-5=4

=>x=9(nhận)

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Bài 1:
a. ĐKXĐ: $x\geq \frac{2}{5}$

PT $\Leftrightarrow 5x-2=7^2=49$

$\Leftrightarrow 5x=51$

$\Leftrightarrow x=\frac{51}{5}=10,2$

b. ĐKXĐ: $x\geq 3$

PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{25(x-3)}=24$

$\Leftrightarrow 3\sqrt{x-3}+5\sqrt{x-3}=24$

$\Leftrightarrow 8\sqrt{x-3}=24$

$\Leftrightarrow \sqrt{x-3}=3$

$\Leftrightarrow x-3=9$

$\Leftrightarrow x=12$ (tm)

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Bài 1:

c. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow x^2-5x+6-2(\sqrt{x-2}-1)=0$

$\Leftrightarrow (x-2)(x-3)-2.\frac{x-3}{\sqrt{x-2}+1}=0$

$\Leftrightarrow (x-3)[(x-2)-\frac{2}{\sqrt{x-2}+1}]=0$

$x-3=0$ hoặc $x-2=\frac{2}{\sqrt{x-2}+1}$

Nếu $x-3=0$

$\Leftrightarrow x=3$ (tm) 

Nếu $x-2=\frac{2}{\sqrt{x-2}+1}$

$\Leftrightarrow a^2=\frac{2}{a+1}$ (đặt $\sqrt{x-2}=a$)

$\Leftrightarrow a^3+a^2-2=0$

$\Leftrightarrow a^2(a-1)+2a(a-1)+2(a-1)=0$

$\Leftrightarrow (a-1)(a^2+2a+2)=0$

Hiển nhiên $a^2+2a+2=(a+1)^2+1>0$ với mọi $a$ nên $a-1=0$

$\Leftrightarrow a=1\Leftrightarrow \sqrt{x-2}=1\Leftrightarrow x=3$ (tm)

Vậy pt có nghiệm duy nhất $x=3$.

18 tháng 1 2022

a) x^{3}=2 \Leftrightarrow x=\sqrt[3]{2}x3=2x=32.

b) 27 x^{3}=-81 \Leftrightarrow x^{3}=-3 \Leftrightarrow \sqrt[3]{x^{3}}=\sqrt[3]{-3} \Leftrightarrow x=-\sqrt[3]{3}27x3=81x3=33x3=33x=33.

c) \dfrac{1}{2} x^{3}=0,004 \Leftrightarrow x^{3}=0,008 \Leftrightarrow \sqrt[3]{x^{3}}=\sqrt[3]{0,008} \Leftrightarrow x=0,2 .21x3=0,004x3=0,0083x3=30,008x=0,2.

d) \sqrt[3]{3 x+1}=4 \Leftrightarrow 3 x+1=4^{3} \Leftrightarrow x=21.33x+1=43x+1=43x=21.

e) \sqrt[3]{3-2 x}=-3 \Leftrightarrow 3-2 x=(-3)^{3} \Leftrightarrow x=15.332x=332x=(3)3x=15.

f) \sqrt[3]{x-2}+2=x \Leftrightarrow \sqrt[3]{x-2}=x-2 \Leftrightarrow x-2=(x-2)^{3}.3x2+2=x3x2=x2x2=(x2)3.

\Leftrightarrow(x-2)\left[(x-2)^{2}-1\right]=0 \Leftrightarrow\left[\begin{array}{l}x-2=1 \\ (x-2)^{2}=1\end{array}\Leftrightarrow\left[\begin{array}{l}x=2 \\ x-2=1 \\ x-2=-1\end{array}\Leftrightarrow\left[\begin{array}{l}x=2 \\ x=3 \\x=1\end{array}\right.\right.\right..(x2)[(x2)21]=0x2=1(x2)2=1x=2x2=1x2=1x=2x=3x=1.

23 tháng 1 2022

a) x=\(\sqrt[3]{2}\)         b x=\(\sqrt[3]{-3}\)     c) x=0,2       d)x=21       e) x=15      f) x=3

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2