Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 20122015=4k ; 9294=4n.
=>174k-34n=(174)k-(34)n=...1-...1=...0 chia hết cho10
=>A chia hết cho 1/2.10=5.
\(\frac{1}{2^2}>\frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}>\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(....\)
\(\frac{1}{2015^2}>\frac{1}{2014.2015}=\frac{1}{2014}-\frac{1}{2015}\)
nên \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2015^2}>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2004}-\frac{1}{2005}\)
\(=1-\frac{1}{2005}\)
vì \(1-\frac{1}{2005}< 1\)
=> ĐPCM
A=1/2[(7^4)^2008^2015-(3^4)^88^94]
A=1/2.[(...1)-(...1)]
A=1/2.(...0) ma (...0) chia het cho 5 nen 1/2.(...0) chia het cho 5
nen A chia het cho 5.
Vay A chia het cho 5
1/4+2/5+6/8+2/15+6/7
=(1/4+6/8)+(2/5+2/15)+6/7
=(2/8+6/8)+(6/15+2/15)+6/7
=1+8/15+6/7
=1+56/105+90/105
=1+146/105
=1+105/105+41/105
=1+1+41/105
=2+41/105
=2 và 41/105
2 và 41/105 là hỗn số nha
1/4+2/5+6/8+2/15+6/7
Ta có:
1/4=1-3/4
6/8=3/4
2/15=2/3*5=1/3-1/5
==> 1-3/4+2/5+3/4+1/3-1/5+6/7
=1+1/3+1/5+6/7
=(105+35+21+90)/105
=251/105.
a) Ta có:
\(\overline{abbc}=\overline{ab}.\overline{ac}.7\left(1\right)\)
\(\Leftrightarrow100.\overline{ab}+\overline{bc}=7.\overline{ab}.\overline{ac}\)
\(\Leftrightarrow\overline{ab}\left(7.\overline{ac}-100\right)=\overline{bc}\)
\(\Leftrightarrow7.\overline{ac}-100=\frac{\overline{bc}}{\overline{ab}}\)
Vì \(0< \frac{\overline{bc}}{\overline{ab}}< 10\)
\(\Leftrightarrow0< 7.\overline{ac}-1000< 10\)
\(\Leftrightarrow100< 7.\overline{ac}< 110\)
\(\Leftrightarrow14< \frac{100}{7}< \overline{ac}< \frac{110}{7}< 16\)
\(\Leftrightarrow\overline{ac}=15\)
Thay vào \(\left(1\right)\) ta được:
\(\overline{1bb5}=\overline{1b}.15.7\)
\(\Leftrightarrow1005+110b=1050+105b\)
\(\Leftrightarrow5b=45\Leftrightarrow b=9\)
Vậy: \(\left\{\begin{matrix}a=1\\b=9\\c=5\end{matrix}\right.\)
b) Vì \(2012;92\in B\left(4\right)\)
\(\Rightarrow2012^{2015};92^{94}\in B\left(4\right)\)
\(\Rightarrow\left\{\begin{matrix}2012^{2015}=4m\left(m\ne0\right)\\92^{96}=4n\left(n\ne0\right)\end{matrix}\right.\)
Khi đó: \(7^{2012^{2015}}-3^{92^{94}}=7^{4m}-7^{4n}=\left(...1\right)-\left(...1\right)=0\)
Vì \(7^{2012^{2015}}-3^{92^{94}}\) có tận cùng \(=0\Rightarrow7^{2012^{2015}}-3^{92^{94}}⋮10\)
Dễ thấy: \(7^{2012^{2015}}-3^{92^{94}}>0\) Mà \(7^{2012^{2015}}-3^{92^{94}}⋮10\)
\(\Rightarrow A=\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)=5k\left(k\in N\right)\)
Vậy \(A=\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)\) là số tự nhiên chia hết cho \(5\) (Đpcm)
biết kết quả thì hỏi làm gì
mình làm j biết