Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(4\left(18-5x\right)-12\left(3x-7\right)=15\left(2x-16\right)-6\left(x+14\right)\)
\(\Rightarrow72-20x-36x+84=30x-240-6x-84\)
\(\Rightarrow-20x-36x-30x+6x=-240-84-72-84\)
\(\Rightarrow-80x=-480\Rightarrow x=6\)
b, \(5\left(3x+5\right)-4\left(2x-3\right)=5x+3\left(2x+12\right)+1\)
\(\Rightarrow15x+25-8x+12=5x+6x+36+1\)
\(\Rightarrow15x-8x-5x-6x=36+1-25-12\)
\(\Rightarrow-4x=0\Rightarrow x=0\)
c, \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow10x-12x-12x=-16+11+16-15\)
\(\Rightarrow-14x=-4\Rightarrow x=\dfrac{2}{7}\)
d, \(5x-3\left\{4x-2\left[4x-3\left(5x-2\right)\right]\right\}=182\)
\(\Rightarrow5x-3\left[4x-2\left(4x-15x+6\right)\right]=182\)
\(\Rightarrow5x-3\left(4x-8x+30x-12\right)=182\)
\(\Rightarrow5x-12x+24x-90x+36=182\)
\(\Rightarrow-73x=182-36\)
\(\Rightarrow-73x=146\Rightarrow x=-2\)
Chúc bạn học tốt!!!
a, \(4\left(18-5x\right)-12\left(3x-7\right)=15\left(2x-16\right)-6\left(x+14\right)\)
\(\Leftrightarrow72-20x-36x+84=30x-240-6x-84\)
\(\Leftrightarrow156-56x=24x-324\)
\(\Leftrightarrow-80x+480=0\Leftrightarrow x=-6\)
b, \(5\left(3x+5\right)-4\left(2x-3\right)=5x+3\left(2x-12\right)+1\)
\(\Leftrightarrow15x+25-8x+12=5x+6x-36+1\)
\(\Leftrightarrow7x+37=11x-35\)
\(\Leftrightarrow-4x+72=0\Leftrightarrow x=18\)
c, \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-2x-1=12x-5\)
\(\Leftrightarrow-14x+4=0\Leftrightarrow x=\frac{2}{7}\)
d, \(5x-3\left\{4x-2\left[4x-3\left(5x-2\right)\right]\right\}=182\)
\(\Leftrightarrow5x-3\left[4x-15x+6\right]=182\)
\(\Leftrightarrow5x-3\left(-11x+6\right)=182\)
\(\Leftrightarrow5x+33x-18-182=0\)
\(\Leftrightarrow38x-200=0\Leftrightarrow x=\frac{100}{19}\)
a) 5 - 4x = 3x - 9
\(\Leftrightarrow5-4x-3x+9=0\)
\(\Leftrightarrow14-7x=0\)
\(\Leftrightarrow7x=14\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
b) \(\left(x-4\right)\left(3x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-3;4\right\}\)
c) \(\dfrac{x}{x+4}+\dfrac{12}{x-4}=\dfrac{4x+48}{x\cdot x-16}\)(1)
ĐKXĐ: \(x\ne\pm4\)
\(\left(1\right)\Leftrightarrow\dfrac{x\left(x-4\right)+12\left(x+4\right)-4x-48}{\left(x+4\right)\left(x-4\right)}=0\)
\(\Leftrightarrow x^2-4x+12x+48-4x-48=0\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-4\left(KTM\right)\end{matrix}\right.\)
Vậy \(S=\left\{0\right\}\)
d) \(4-2x=7-x\)
\(\Leftrightarrow4-2x-7+x=0\)
\(\Leftrightarrow-x-3=0\)
\(\Leftrightarrow-x=3\Leftrightarrow x=-3\)
Vậy \(S=\left\{-3\right\}\)
e) \(\left(x+4\right) \left(8-4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\8-4x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{-4;2\right\}\)
f) \(\dfrac{x}{x+5}+\dfrac{11}{x-5}=\dfrac{x+55}{x\cdot x-25}\left(2\right)\)
ĐKXĐ: \(x\ne\pm5\)
\(\left(2\right)\Leftrightarrow\dfrac{x\left(x-5\right)+11\left(x+5\right)-x-55}{\left(x+5\right)\left(x-5\right)}=0\)
\(\Leftrightarrow x^2-5x+11x+55-x-55=0\)
\(\Leftrightarrow x^2+5x=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-5\left(KTM\right)\end{matrix}\right.\)
Vậy \(S=\left\{0\right\}\)
g) \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)-3x-1-10-12x}{6}=0\)
\(\Leftrightarrow9x+6-3x-1-10-12x=0\)
\(\Leftrightarrow-6x-5=0\)
\(\Leftrightarrow-6x=5\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
Vậy \(S=\left\{-\dfrac{5}{6}\right\}\)
h) \(2x-\left(3-5x\right)=4\left(x+3\right)\)
\(\Leftrightarrow2x-3+5x-4x-12=0\)
\(\Leftrightarrow3x-15=0\)
\(\Leftrightarrow x=5\)
Vậy \(S=\left\{5\right\}\)
i) \(3x-6+x=9-x\)
\(\Leftrightarrow3x-6+x-9+x=0\)
\(\Leftrightarrow5x-15=0\)
\(\Leftrightarrow x=3\)
Vậy \(S=\left\{3\right\}\)
k)\(2t-3+5t=4t+12\)
\(\Leftrightarrow2t-3+5t-4t-12=0\)
\(\Leftrightarrow3t-15=0\)
\(\Leftrightarrow t=5\)
Vậy \(S=\left\{5\right\}\)
a)4(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
<=>72 - 20x - 36x +84 = 30x - 240 - 6x 84
<=> -80x = -480
<=> x = 6
b) 5(3x+5)-4(2x-3) =5x+3(2x+12)+1
<=> 15x + 25 - 8x + 12 = 5x + 6x + 36 + 1
<=> 15x + 25 - 8x + 12 - 5x - 6x - 36 - 1 = 0
<=> -4x = 0
<=> x = 0
c) 2(5x-8)-3(4x-5)=4(3x-4)+11
= 10x - 16 - 12x + 15 = 12x - 16 + 11
= -14x = -4
= x =\(\frac{2}{7}\)
d) 5x-3{4x-2[4x-3(5x-2)]}=182
= 5x - 3 . [4x - 2(4x - 15x + 6)]
= 5x - 3 . (4x - 8x + 30x - 12)
= 5x - 12x + 24x - 90x + 36
= -73x + 36 = 182
=> -73x = 182 - 36 = 146
=> x = 146 : (-73) = -2
~Hok tốt~
làm khuyến mại 1 câu;
a) = 12x2 -12x2 +20x -10x +17 =0
10x = -17
x = -17/10
a: \(\dfrac{x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)
\(=\dfrac{x+10}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-\left(x+10\right)}{2\left(x+2\right)}\)
b: \(\dfrac{1-4x^2}{x^2+4x}:\dfrac{2-4x}{3x}\)
\(=\dfrac{\left(2x-1\right)\left(2x+1\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(x-2\right)}\)
\(=\dfrac{3\left(2x-1\right)\left(2x+1\right)}{2\left(x-2\right)\left(x+4\right)}\)
c: \(=\dfrac{4y^2}{7x^4}\cdot\dfrac{35x^2}{-8y}=\dfrac{5}{x^2}\cdot\dfrac{-1}{2}\cdot y=\dfrac{-5y}{2x^2}\)
d: \(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}\cdot\dfrac{x+4}{2\left(x-2\right)}=\dfrac{x+2}{6}\)
a: \(A=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
b: \(B=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)
c: \(C=\dfrac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\dfrac{3x+4}{x}\)
d: \(D=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}=\dfrac{x+2}{2}\)
e: \(E=\dfrac{-x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{-x}{x+2}\)
f: \(F=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)
\(\dfrac{2x^3-4x^2}{x^2+8x+16}.\dfrac{3x+12}{4x-x^3}\)
(ĐKXĐ: x ≠ \(-4\) ; x ≠ 0; x ≠ 2 ; x ≠ \(-2\) )
\(\dfrac{2x^3-4x^2}{x^2+8x+16}.\dfrac{3x+12}{4x-x^3}\)
\(=\dfrac{2x^2\left(x-2\right)}{\left(x+4\right)^2}.\dfrac{3\left(x+4\right)}{x\left(4-x^2\right)}\)
\(=\dfrac{2x^2\left(x-2\right)}{\left(x+4\right)^2}.\dfrac{3\left(x+4\right)}{x\left(2-x\right)\left(2+x\right)}\)
\(=\dfrac{6x^2\left(x-2\right)\left(x+4\right)}{x\left(x+4\right)^2\left(2-x\right)\left(2+x\right)}\)
\(=\dfrac{-6x^2\left(2-x\right)\left(x+4\right)}{x\left(x+4\right)^2\left(2-x\right)\left(2+x\right)}\)
\(=\dfrac{-6x}{\left(x+4\right)\left(x+2\right)}\)
(x - 4)(x2 + 4x + 16) - x(x2 - 6) = 2
x3 - 64 - x3 + 6x = 2
6x = 2 + 64
6x = 66
x = 66 : 6
x = 11
x3 - 27 + 3x(x - 3)
= (x - 3)(x2 + 3x + 9) + 3x(x - 3)
= (x - 3)(x2 + 3x + 9 + 3x)
= (x - 3)(x2 + 6x + 9)
= (x - 3)(x + 3)2
5x3 - 7x2 + 10x - 14
= 5x(x2 + 2) - 7(x2 + 2)
= (x2 + 2)(5x - 7)