K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 giờ trước (15:30)

Đặt A = 1 + 2 - 3 - 4 + ... + 97 + 98 - 99 - 100

Biểu thức A có : (100 - 1) : 1 + 1 = 100 (số hạng)

Nhóm 4 số hạng thành một nhóm ta được : 100 : 4 = 25 (nhóm)

=> A = (1 + 2 - 3 - 4) + ... + (97 + 98 - 99 - 100)

=> A = (-4) + ... + (-4)

=> A = (-4) . 25

=> A = -100

Vậy A = -100

2 tháng 1 2018

1-2-3+4+5-6-7+8+.....+97-98-99+100

= (1-2-3+4)+(5-6-7+8)...+(97-98-99+100)

= (-4+4)+(-8+8)+.....(-100+100)

=0+0+.....+0=0

4 tháng 1 2018

Nhầm đề bài rồi, thôi, cảm ơn bạn nhiều nhé.

2 tháng 7 2016

a) \(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(\Rightarrow3A=A+2A=2^{101}-2\)

\(\Rightarrow A=\frac{2^{101}-2}{3}\)

b) \(3B=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)

\(\Rightarrow4B=B+3B=3^{101}+1\)

\(\Rightarrow B=\frac{3^{101}+1}{4}\)

2 tháng 7 2016

Mk nghĩ bạn làm sai

27 tháng 6 2018

Đặt \(A=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)

\(A=\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+...+\left(\frac{98}{2}+1\right)+1\) ( 99/1 = 99, tất cả 98 ( không tính 99/1) hạng tử trong A đều cộng với 1 , dư ra 1 chỗ cuối)

\(A=\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}+\frac{100}{100}\) ( 100/100=1)

\(A=100.\left(\frac{1}{2}+...+\frac{1}{97}+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)\)

Thay A vào E, có:

\(E=\frac{100.\left(\frac{1}{2}+...+\frac{1}{97}+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

\(E=100\)

27 tháng 6 2018

\(\Rightarrow E=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+....+\frac{98}{2}+1+1+...+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)     ( Có 99 số 1)

\(\Rightarrow\frac{\frac{1}{99}+1+\frac{2}{98}+\frac{3}{97}+1+...+\frac{98}{2}+1+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)(Nhóm 98 số 1 với 98 phân số đầu ở trên tử)mik viết thiếu nha sorry *-*

\(\Rightarrow E=\frac{\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

\(\Rightarrow E=\frac{\frac{100}{2}+\frac{100}{3}+\frac{100}{4}+...+\frac{100}{99}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

\(\Rightarrow E=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

\(\Rightarrow E=\frac{100.1}{1}=100\)

~Chúc bạn hok tốt~

11 tháng 10 2015

ta có A=100+99 - 98-97 + 96+95 - 94-93 +... +8+7 -6-5 +4+3 -2-1 (có 100 số ) (1) 
COI B=0= 2+2 - 2-2 +2+2 - 2-2 +...+ 2+2 - 2-2 +2+2 -2-2 (có 100 số 2) 
=> A+B = A= 102+101 -100-99+ 98+97 - 96-95+ ...+ 10+9 -8-7+ 6+5 -4-3 (2) 
Lấy (1) + (2) ta được: 
2A = 102+101 -2-1 = 200 
=> A= 100.

mik cũng ko biết có đúng ko nữa

11 tháng 10 2015

đáng lẽ là 100+99-98+97-96+.....4-3+2-1

Ta có 100+99-98+97-96+.......+4-3-2-1= (100+99)-(98-97)-(96-95)-............-(4-3)-(2-1)

mà 1 ---> 98 có 98 số -----> 199 - 98/2 =150

18 tháng 10 2015

A = 2100 - 299 + 298 - 297 + ...+ 2- 2

2.A = 2101 - 2100 + 299 - 298 + ...+ 2- 22

A + 2.A =  2101 - 2 => 3.A = 2101 - 2 => A = (2101 - 1) / 3

B : tương tự

2 tháng 7 2016

A = 2100 - 299 + 298 - 297 + ... + 22 - 2

2A = 2101 - 2100 + 299 - 298 + ... + 23 - 22

=> A + 2A = 2101 - 2

=> 3A = 2101 - 2

=> A = 2101 - 2 / 3

Câu b lm tươg tự, cũg nhân B vs 3 rùi cộng B và 3B

Đáp án câu B là: 3101 + 1 / 4

Ủng hộ mk nha ♡_♡^_-

2 tháng 7 2016

A=2*(100-99+98-97+...+2-1)

=>A=2*[(100-99)+(98-97)+...+(2-1)]

=>A=2*(1*50)=2*50=100

4 tháng 4 2017

Đặt : \(B=\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)

\(B=\left(\dfrac{99}{1}+1\right)+\left(\dfrac{98}{2}+1\right)+...+\left(\dfrac{1}{99}+1\right)-99\)

\(B=\dfrac{100}{1}+\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}-99\)

\(B=\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\left(100-99\right)\)

\(B=\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\dfrac{100}{100}\)

\(B=100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)

Ta có : \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}=\dfrac{1}{100}\)

9 tháng 10 2020

Xét tử ta có: 

\(101+100+99+98+...........+3+2+1\)

\(=1+2+3+..........+99+100+101\)

\(=\frac{101.102}{2}=5151\)

Xét mẫu ta có:

\(101-100+99-98+.......+3-2+1\)

\(=\left(101-100\right)+\left(99-98\right)+.......+\left(3-2\right)+1\)

\(=1+1+.......+1+1=51\)

\(\Rightarrow A=\frac{5151}{51}=101\)

20 tháng 7 2018

\(\sqrt{1+2+3+4+...+99+100+99+...+3+2+1}\)

\(=\sqrt{\left(99+1\right)\cdot99+100}\)

\(=\sqrt{100\cdot99+100}\)

\(=\sqrt{9900+100}\)

\(=\sqrt{10000}\)

\(=100\)

20 tháng 7 2018

thanks nha