Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)
\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)
a, s1 có 2015 hạng tử
=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008
Lời giải:
a,S1=1+(-2)+3+(-4)+...+(-2014)+2015
=(1-2)+(3-4)+...+(2013-2014)+2015
=-1+(-1)+...+(-1)+2015
=-1.1007+2015
=(-1007)+2015
=1008
b,S2=(-2)+4+(-6)+8+...+(-2014)+2016
=(-2+4)+(-6+8)+...+(-2014+2016)
=2+2+...+2
=2.504
=1008
c,S3=1+(-3)+5+(-7)+...+2013+(-2015)
=(1-3)+(5-7)+...+(2013-2015)
=(-2)+(-2)+...+(-2)
=(-2).504
=-1008
d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016
=(-2015+2015)+...+0+2016
=0+...+0+2016
=2016
STUDY WELL !
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
\(B=\left(\dfrac{1}{2015}+1\right)+\left(\dfrac{2}{2014}+1\right)+\left(\dfrac{3}{2013}+1\right)+...+\left(\dfrac{2014}{2}+1\right)+1\)
\(=\dfrac{2016}{2}+\dfrac{2016}{3}+...+\dfrac{2016}{2016}\)
=>B:A=2016
Chia thành 2 vế một vế âm & 1 về Dượng sau đó tính tổng mỗi vế
=> Cổng 2 vế lại
=> Kết quả
1-2+3-4+5-6+....+2013-2014+2015-2016
=(1-2)+(3-4)+(5-6)+.....+(2013-2014)+(2015-2016)
=-1+(-1)+(-1)+.....+(-1)+(-1)
Vì từ 1 đến 2016 có 2016 số số hạng => có 1008 cặp => có 1008 số -1
=-1 x 1008
=1008
a) S1 = 1 + (-2) + 3 + (-4) + ... + (-2014) + 2015
S1 = [1 + (-2)] + [3 + (-4)] + ... + [2013 + (-2014)] + 2015
S1 = (-1) + (-1) + ... + (-1) + 2015
2014 : 2 = 1007
S1 = (-1) . 1007 + 2015
S1 = (-1007) + 2015
S1 = 1008
b) S2 = (-2) + 4 + (-6) + 8 + ... + (-2014) + 2016
S2 = [(-2) + 4] + [(-6) + 8] + ... + [(-2014) + 2016]
S2 = 2 + 2 + ... 2
2016 : 2 = 1008
S2 = 2 . 1008
S2 = 2016
c) S3 = 1 + (-3) + 5 + (-7) + ... + 2013 + (-2015)
S3 = [1 + (-3)] + [5 + (-7)] + ... + [2013 + (-2015)]
S3 = (-2) + (-2) + ... + (-2)
(2015 - 1) : 2 + 1 = 1008 : 2 = 504
S3 = (-2) . 504
S3 = -1008
d) S4 = (-2015) + (-2014) + (-2013) + ... + 2015 + 2016
S4 = 2016 + [(-2015) + 2015] + [(-2014) + 2014] + ... + [(-1) + 1] + 0
S4 = 2016 + 0
S4 = 2016
a, \(S_1=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\\ =1+\left[\left(-2\right)+3\right]+\left[\left(-4\right)+5\right]+...+\left[\left(-2014\right)+2015\right]\\ =1+1+...+1=1008\)
b, làm tương tự phần a
c, cũng làm tương tự
d, \(S_4=\left(-2015\right)+\left(-2014\right)+...+2015+2016\\ =\left[\left(-2015\right)+2015\right]+\left[\left(-2014\right)+2014\right]+...+\left[\left(-1\right)+1\right]+0+2016\\ =0+0+...+0+2016=2016\)
\(1+2+\left(-3\right)+\left(-4\right)+....+2013+2014+\left(-2015\right)+\left(-2016\right)\)
\(=\left(1-3\right)+\left(2-4\right)+...+\left(2013-2015\right)+\left(2014-2016\right)\)
\(=\left(-2\right)+\left(-2\right)+.....+\left(-2\right)+\left(-2\right)\)
\(=\left(-2\right)\times1008=-2016\)
1+2+(-3)+(-4)+...+2013+2014+(-2015)+(-2016)
= (1-3)+(2-4)+...+(2013-2015)+(2014-2016)
= (-2)+(-2)+...+(-2)+(-2)
= (-2) x 1008
= -2016