Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\)+ \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)+ \(\dfrac{1}{64}\)+ \(\dfrac{1}{128}\)
A\(\times\)2 = 2 + 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\)
A \(\times\) 2 - A = 2 - \(\dfrac{1}{128}\)
A \(\times\)( 2-1) = \(\dfrac{255}{128}\)
A = \(\dfrac{255}{128}\)
Gọi \(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\) là T
\(T=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)
\(2T=2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{64}\)
\(2T-T=\left(2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{64}\right)-\left(1+\dfrac{1}{2}+....+\dfrac{1}{64}+\dfrac{1}{128}\right)\)
\(T=2+\left(1-1\right)+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+....+\left(\dfrac{1}{64}-\dfrac{1}{64}\right)-\dfrac{1}{128}\)
\(T=2+0+0+...-\dfrac{1}{128}\)
\(T=\dfrac{256}{128}-\dfrac{1}{128}\)
\(T=\dfrac{255}{128}\)
Đặt A = 1/2+1/4+1/8+1/18+1/32+1/64+1/128+1/256
=> 2A = 1+1/2+1/4+1/8+1/18+1/32+1/64+1/128
=> 2A - A = 1 - 1/256
=> A = 255/256 nhé!
mk chỉnh lại đề
\(A=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}....\frac{99}{100}\)
\(=\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}.\frac{5^2-1}{5^2}....\frac{10^2-1}{10^2}\)
\(=\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}.....\frac{9.11}{10^2}\)
\(=\frac{2.3.4...9}{3.4.5...10}.\frac{4.5.6...11}{3.4.5...10}\)
\(=\frac{2}{10}.\frac{11}{3}=\frac{11}{15}\)
ta có: \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{x}.\)
\(A=1+\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2.2.2}+...+\frac{1}{x}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2.2}+...+\frac{1}{x:2}\)
\(\Rightarrow2A-A=2-\frac{1}{x}\)
\(A=2-\frac{1}{x}=\frac{4095}{2048}\)
=> 1/x = 1/2048
=> x = 2048 ( 2048 = 211 )
\(\dfrac{7}{19}x\dfrac{8}{23}+\dfrac{7}{19}x\dfrac{15}{23}+1\dfrac{7}{19}\)
= \(\dfrac{7}{19}x\left(\dfrac{8}{23}+\dfrac{15}{23}\right)+1+\dfrac{7}{19}\)
=\(\dfrac{7}{19}x1+1+\dfrac{7}{19}\)
= \(\dfrac{7}{19}+1+\dfrac{7}{19}=1\dfrac{14}{19}\) = \(\dfrac{33}{19}\)
\(\dfrac{75}{100}+\dfrac{18}{21}+\dfrac{49}{32}+\dfrac{1}{4}+\dfrac{3}{21}-\dfrac{17}{32}\)
= \(\dfrac{3}{4}+\dfrac{6}{7}+\dfrac{49}{32}+\dfrac{1}{4}+\dfrac{1}{7}-\dfrac{17}{32}\)
= \(\left(\dfrac{3}{4}+\dfrac{1}{4}\right)+\left(\dfrac{6}{7}+\dfrac{1}{7}\right)+\left(\dfrac{49}{32}-\dfrac{17}{32}\right)\)
= 1 + 1 + 1 = 3
\(\dfrac{8}{9}x\dfrac{15}{16}x\dfrac{24}{25}x\dfrac{35}{36}x\dfrac{48}{49}x\dfrac{63}{64}\)
= \(\dfrac{3}{4}\) *Câu này bạn tự sử dụng gạch nhé!
`1,`
`a,`
`7/19 \times 8/23 + 7/19 \times 15/23 + 1 7/19`
`= 7/19 \times 8/23 + 7/19 \times 15/23 + 1 + 7/19`
`= 7/19 \times (8/23 + 15/23 + 1) + 1`
`= 7/19 \times 2 + 1`
`=14/19 + 1`
`= 33/19`
`b,`
`75/100 + 18/21 + 49/32 + 1/4 + 3/21 - 17/32`
`= 75/100 + (18/21 + 3/21) + (49/32 - 17/32) + 1/4`
`= 0,75 + 1 + 1 + 0,25`
`= (0,75 + 0,25) + 1 + 1`
`= 1+1+1=3`
`c,`
`8/9 \times 15/16 \times 24/25 \times 35/36 \times 48/49 \times 63/64`
`=` \(\dfrac{2\times3}{3\times3}\times\dfrac{3\times5}{4\times4}\times\dfrac{3\times4\times2}{5\times5}\times\dfrac{5\times7}{6\times6}\times\dfrac{6\times8}{7\times7}\times\dfrac{7\times9}{8\times8}\)
`= 3/4` (bạn sử dụng gạch, rút gọn các số là được nhé).
\(2A=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{2}{x}\)
=> \(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{2}{x}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{2}{x}+\frac{1}{x}\right)\)
=> \(A=2-\frac{1}{x}\)
Giải phương trình:
\(2-\frac{1}{x}=\frac{4095}{2048}\)
\(\frac{1}{x}=2-\frac{4095}{2048}\)
\(\frac{1}{x}=\frac{1}{2048}\)
x=2048
1/2 + 1/4 + 1/8 + … + 1/128
= 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + … + 1/64 - 1/128
= 1 - 1/128
= 128/128 - 1/128
= 127/128
Chúc bạn học tốt.
😁😁😁
cảm ơn nguyễn phú tài