Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{10100}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{100}-\frac{1}{101}\)
=\(1-\frac{1}{101}\)
=\(\frac{100}{101}\)
b,\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}\)
=\(\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{256}-\frac{1}{512}\right)\)
=\(1-\frac{1}{512}\)
=\(\frac{511}{512}\)
a) trieu dang làm rồi
b) A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
A = 1 - 1/2 + 1/2- 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 - 1/256 - 1/512
A = 1 - 1/512
A = 511/512
\(=\left(2+4+6+...+98\right)\left(6-6\right)\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\right)\)
=0
a.A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
A = 1 - 1/2 + 1/2- 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 - 1/256 - 1/512
A = 1 - 1/512
A = 511/512
b. 1/2 + 1/6 + 1/12 + … + 1/110
= 1/1.2 + 1/2.3 + 1/3.4 + … + 1/10.11. (dấu . thay dấu x).
= 1/1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 +…+ 1/10 – 1/11
= 1/1 – 1/11
= 10/11
Chúc bạn học giỏi nha!
a ) Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}\)
\(\Rightarrow A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
Nhân 2 vào hai vế của biểu thức A , ta được :
\(2A=2.\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)
\(\Rightarrow2A=1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
Lấy biểu thức 2A - A , ta được :
\(2A-A=\left(1+\frac{1}{2^1}+\frac{1}{2^2}+....+\frac{1}{2^8}\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)
\(\Rightarrow A=1-\frac{1}{2^9}\Rightarrow A=\frac{512}{512}-\frac{1}{512}=\frac{511}{512}\)
Vậy \(A=\frac{511}{512}\)
b ) Đặt \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{90}+\frac{1}{110}\)
\(\Rightarrow B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(\Rightarrow B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(B=1-\frac{1}{11}=\frac{11}{11}-\frac{1}{11}=\frac{10}{11}\)
Vậy \(B=\frac{10}{11}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}\)
\(=1-\frac{1}{5}\)
\(=\frac{4}{5}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Ta có:
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
\(\Rightarrow2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)=1+\frac{1}{2}+...+\frac{1}{2^8}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\right)\)
\(\Rightarrow A=1-\frac{1}{2^9}=1-\frac{1}{512}=\frac{511}{512}\)
Vậy giá trị biểu thức là \(\frac{511}{512}\)
b) Ta có:
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}+\frac{1}{110}=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
Vậy giá trị biểu thức là \(\frac{10}{11}\)
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\\ 2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^8}\\ 2A-A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)\\ A=1-\dfrac{1}{2^9}=\dfrac{511}{512}\)