
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1) Thay x=16 vào A ta có:
A=\(\frac{16+\sqrt{16}+1}{\sqrt{16}+2}\)
A=\(\frac{16+4+1}{4+2}\)
A=\(\frac{21}{6}=\frac{7}{2}\)
\(2,\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\)
\(=\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{2x-x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)\(\left(đpcm\right)\)
\(3,P=A.B=\frac{x+\sqrt{x}+1}{\sqrt{x}+2}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
Ta thấy \(\left(\sqrt{x}-1\right)^2>0\Rightarrow x-2\sqrt{x}+1>0\)
\(\Rightarrow x+\sqrt{x}+1>3\sqrt{x}\)
\(\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>\frac{3\sqrt{x}}{\sqrt{x}}\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>3\left(đpcm\right)\)

câu 1:
khi Oy nằm giữa Oz và Ox,Oy nằm trên nửa mặt phẳng bờ chứa tia Ox
câu 2 ko hiểu đề

\(a;\dfrac{3}{2}x-\dfrac{2}{3}=\dfrac{2}{3}:\dfrac{3}{2}\\ \dfrac{3}{2}x-\dfrac{2}{3}=\dfrac{4}{9}\\ \dfrac{3}{2}x=\dfrac{4}{9}+\dfrac{2}{3}=\dfrac{10}{9}\\ x=\dfrac{10}{9}:\dfrac{3}{2}=\dfrac{20}{27}\\ b;\left(\dfrac{9}{11}-x\right):\left(-\dfrac{10}{11}\right)=1-\dfrac{4}{5}\\ \left(\dfrac{9}{11}-x\right):\left(-\dfrac{10}{11}\right)=\dfrac{1}{5}\\ \dfrac{9}{11}-x=\dfrac{1}{5}\cdot\left(-\dfrac{10}{11}\right)\\ \dfrac{9}{11}-x=-\dfrac{2}{11}\\ x=\dfrac{9}{11}-\left(-\dfrac{2}{11}\right)=\dfrac{9}{11}+\dfrac{2}{11}\\ x=1\\ c;-\dfrac{11}{12}x+\dfrac{3}{4}=-\dfrac{1}{6}\\ -\dfrac{11}{12}x=-\dfrac{1}{6}-\dfrac{3}{4}\\ -\dfrac{11}{12}x=-\dfrac{11}{12}\\ x=\left(-\dfrac{11}{12}\right):\left(-\dfrac{11}{12}\right)=1\)
\(d;-\dfrac{5}{4}-\left(1\dfrac{1}{2}+x\right)=4,5\\ \Leftrightarrow-\dfrac{5}{4}-\left(\dfrac{3}{2}+x\right)=4,5\\\dfrac{3}{2}+x=-\dfrac{5}{4}-4,5\\ \dfrac{3}{2}+x=-\dfrac{23}{4}\\ x=-\dfrac{23}{4}-\dfrac{3}{2}\\ x=-\dfrac{29}{4}\\ đ;\left(\dfrac{3}{4}-x:\dfrac{2}{15}\right)\cdot\dfrac{1}{5}=-2,6\\ \dfrac{3}{4}-x:\dfrac{2}{15}=-2,6:\dfrac{1}{5}\\ \dfrac{3}{4}-x:\dfrac{2}{15}=-13\\ x:\dfrac{2}{15}=\dfrac{3}{4}-\left(-13\right)\\ x:\dfrac{2}{15}=\dfrac{55}{4}\\ x=\dfrac{55}{4}\cdot\dfrac{2}{15}=\dfrac{11}{6}\\ e;3-\left(\dfrac{1}{6}-x\right)\cdot\dfrac{2}{3}=\dfrac{2}{3}\\ \left(\dfrac{1}{6}-x\right)\cdot\dfrac{2}{3}=3-\dfrac{2}{3}\\ \left(\dfrac{1}{6}-x\right)\cdot\dfrac{2}{3}=\dfrac{7}{3}\\ \dfrac{1}{6}-x=\dfrac{7}{3}:\dfrac{2}{3}=\dfrac{7}{2}\\ x=\dfrac{1}{6}-\dfrac{7}{2}=-\dfrac{10}{3}\)
\(f;\left(1-2x\right)\cdot\dfrac{4}{5}=\left(-2\right)^3\\ \left(1-2x\right)\cdot\dfrac{4}{5}=-8\\ 1-2x=-8:\dfrac{4}{5}=-10\\ 2x=1-\left(-10\right)=11\\ x=\dfrac{11}{2}\\ g;\dfrac{1}{6}-\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{8}\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{6}-\dfrac{1}{8}=\dfrac{1}{24}\\ \Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{1}{24}\Rightarrow x=\dfrac{3}{4}\\\dfrac{1}{2}x-\dfrac{1}{3}=-\dfrac{1}{24}\Rightarrow x=\dfrac{7}{12}\end{matrix}\right.\)

\(\frac{3}{2}x-\frac{2}{3}=\frac{2}{3}:\frac{3}{2}\)
\(\frac{3}{2}x-\frac{2}{3}=\frac{4}{9}\)
\(\frac{3}{2}x=\frac{4}{9}+\frac{2}{3}\)
\(\frac{3}{2}x=\frac{10}{9}\)
\(x=\frac{10}{9}:\frac{3}{2}\)
\(x=\frac{20}{27}\)
Vậy x=\(\frac{20}{27}\)
\(\left(\frac{9}{11}-x\right):\frac{-10}{11}=1-\frac{4}{5}\)
\(\left(\frac{9}{11}-x\right):\frac{-10}{11}=\frac{1}{5}\)
\(\frac{9}{11}-x=\frac{1}{5}\cdot\frac{-10}{11}\)
\(\frac{9}{11}-x=\frac{-2}{11}\)
\(x=\frac{9}{11}-\frac{-2}{11}\)
\(x=1\)
Vậy x=1
\(\frac{-11}{12}\cdot x+\frac{3}{4}=\frac{-1}{6}\)
\(\frac{-11}{12}\cdot x=\frac{-1}{6}-\frac{3}{4}\)
\(\frac{-11}{12}\cdot x=\frac{21}{12}\)
\(x=\frac{-21}{11}\)
Vậy x=\(\frac{-21}{11}\)
\(\frac{-5}{4}-\left(1\frac{1}{2}+x\right)=4,5\)
\(\frac{3}{2}+x=\frac{-5}{4}-\frac{9}{2}\)
\(\frac{3}{2}+x=\frac{23}{4}\)
\(x=\frac{17}{4}\)
Vậy x=\(\frac{17}{4}\)
\(\left(\frac{3}{4}-x:\frac{2}{15}\right)\cdot\frac{1}{5}=-2,6\)
\(\frac{3}{4}-x:\frac{2}{15}=\frac{-13}{5}:\frac{1}{5}\)
\(\frac{3}{4}-x:\frac{2}{15}=-13\)
\(x:\frac{2}{15}=\frac{3}{4}-\left(-13\right)\)
\(x:\frac{2}{15}=\frac{45}{4}\)
\(x=\frac{3}{2}\)
Vậy x=\(\frac{3}{2}\)
\(3-\left(\frac{1}{6}-x\right)\cdot\frac{2}{3}=\frac{2}{3}\)
\(3-\left(\frac{1}{6}-x\right)=\frac{2}{3}:\frac{2}{3}\)
\(3-\left(\frac{1}{6}-x\right)=1\)
\(\frac{1}{6}-x=2\)
\(x=\frac{1}{6}-2\)
\(x=\frac{-11}{6}\)
Vậy x=\(\frac{-11}{6}\)
\(\left(1-2x\right)\cdot\frac{4}{5}=\left(-2\right)^3\)
\(1-2x=\frac{-1}{10}\)
\(2x=1-\frac{-1}{10}\)
\(2x=\frac{11}{10}\)
\(x=\frac{11}{20}\)
Vậy x=\(\frac{11}{20}\)
\(\frac{1}{6}-\left|\frac{1}{2}\cdot x-\frac{1}{3}\right|=\frac{1}{8}\)
\(\left|\frac{1}{2}\cdot x-\frac{1}{3}\right|=\frac{7}{12}\)
\(\Rightarrow\frac{1}{2}x-\frac{1}{3}=\frac{7}{12}\) \(\frac{1}{2}x-\frac{1}{3}=\frac{-7}{12}\)
\(\frac{1}{2}x=\frac{11}{12}\) \(\frac{1}{2}x=\frac{-1}{4}\)
\(x=\frac{11}{6}\) \(x=\frac{-1}{2}\)
Vậy \(x\in\left\{\frac{11}{6};\frac{-1}{2}\right\}\)
\(\frac{3}{2}x-\frac{2}{3}=\frac{2}{3}:\frac{3}{2}\)
\(\frac{3}{2}x=\frac{4}{9}+\frac{6}{9}\)
\(\frac{3}{2}x=\frac{10}{9}\)
\(x=\frac{10}{9}:\frac{3}{2}\)
\(x=\frac{20}{27}\)
tk mình đi mình làm nốt cho hjhj ^^

bạn trả lời câu hỏi của mình trc đi
câu 1 : bạn đang thể hiện cái gì vậy ?
câu 2 đăng bài như vậy để thể hiện cái gì thế
câu 3 bạn có muốn về nhà để thể hiện không ?
Lớp 6 chưa giải được đâu, với lại bài này có trong sách nâng cao lớp 8 của mình nên giải luôn :"))
Đặt \(\sqrt{\frac{x+1}{2y-1}}=t>0\), ta có: \(t+\frac{1}{t}=2,5\)hay \(2t^2-5t+2=0\) . Suy ra \(t_1=2;t_2=\frac{1}{2}\)
Với \(t_1=2\)ta có: \(\hept{\begin{cases}\frac{x+1}{2y-1}=4\\x-y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)
Với \(t_2=3\)ta có \(\hept{\begin{cases}\frac{x+1}{2y-1}=\frac{1}{4}\\x-y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{9}{2}\\y=-\frac{13}{2}\end{cases}}}\)
Vậy .....

buiminh cậu nhớ khi đăng nhập câu hỏi phải xóa \(y=\frac{1}{x^2+\sqrt{x}}\)
nhanh len thoi gian co han thui nha