Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : \(x\ge-1\)
pt<=> \(\left(x+1\right)\left(x^2+1\right)=1\)(bình phương 2 vế ko âm)
<= .\(x^3+x^2+x+1=1\)
<=> \(x\left(x^2+x+1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x^2+x+1=0\end{cases}}\)(vô lí )
vậy x=0
\(1+\sqrt{3x+1}=3x\)
⇔ \(\sqrt{3x+1}=3x-1\)
ĐKXĐ : x ≥ 1/3
Bình phương hai vế
⇔ 3x + 1 = 9x2 - 6x + 1
⇔ 9x2 - 6x + 1 - 3x - 1 = 0
⇔ 9x2 - 9x = 0
⇔ 9x( x - 1 ) = 0
⇔ 9x = 0 hoặc x - 1 = 0
⇔ x = 0 ( ktm ) hoặc x = 1 ( tm )
Vậy x = 1
\(1+\sqrt{3x+1}=3x\left(ĐKXĐ:x\ge-\frac{1}{3}\right)\)
\(\sqrt{3x+1}=3x-1\)
\(\left(\sqrt{3x+1}\right)^2=\left(3x-1\right)^2\)
\(3x+1=9x^2-6x+1\)
\(9x^2-9x=0\)
\(9x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}9x=0\\x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)+8}{2\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)}{2\sqrt{x}-1}+\frac{8}{2\sqrt{x}-1}=\sqrt{x}+\frac{8}{2\sqrt{x}-1}\)
Áp dụng BĐT Cô Si cho 2 số dương \(\sqrt{x}\)và \(\frac{8}{2\sqrt{x}-1}\)ta có :
\(\sqrt{x}+\frac{8}{2\sqrt{x}-1}\ge2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)
\(\Rightarrow A_{min}\)\(\Leftrightarrow2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)nhỏ nhất \(\Rightarrow x=0\)
Vậy \(A=0\)\(\Leftrightarrow\sqrt{x}=\frac{8}{2\sqrt{x}-1}\)( tự tính nha )
Phạm Thị Thùy Linh đây nhé
\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{1}{2}\left(2\sqrt{x}-1+\frac{16}{2\sqrt{x}-1}\right)+\frac{1}{2}\ge\frac{9}{2}\)
Dấu "=" xảy ra khi \(x=\frac{25}{4}\)
x = 2
Ghê quá anh ơi ^^\