Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{x\times\left(x+3\right)}=\dfrac{99}{200}\)
Ta có: \(\left(1-\dfrac{1}{3}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\times\dfrac{1}{2}+...+\left(\dfrac{1}{x}-\dfrac{1}{x+3}\right).\dfrac{1}{2}=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{200}:\dfrac{1}{2}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=1-\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=\dfrac{1}{100}\)
\(\Rightarrow x+1=100\)
\(x=100-1\)
\(x=99\)
\((\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11})\cdot y=\frac{2}{3}\)
\(\Rightarrow(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11})\cdot y=\frac{2}{3}\)
\(\Rightarrow1-\frac{1}{11}\cdot y=\frac{2}{3}\)
\(\Rightarrow\frac{10}{11}\cdot y=\frac{2}{3}\)
\(\Rightarrow y=\frac{2}{3}:\frac{10}{11}=\frac{11}{15}\)
Vậy :\(y=\frac{11}{15}\)
Bạn có muốn mình thử lại không?
a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{9}\right)+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\frac{8}{9}+\frac{1}{x}=1\)
\(\Rightarrow\frac{4}{9}+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{x}=1-\frac{4}{9}\)
\(\Rightarrow\frac{1}{x}=\frac{5}{9}\)
\(\Rightarrow x=\frac{1.9}{5}\)
\(\Rightarrow x=\frac{9}{5}\)
Vậy x = \(\frac{9}{5}\)
b) \(\frac{2}{3}-\frac{1}{3}.\left(x-2\right)=\frac{1}{4}\)
\(\Rightarrow\frac{1}{3}.\left(x-2\right)=\frac{2}{3}-\frac{1}{4}\)
\(\Rightarrow\frac{1}{3}.\left(x-2\right)=\frac{5}{12}\)
\(\Rightarrow x-2=\frac{5}{12}:\frac{1}{3}\)
\(\Rightarrow x-2=\frac{5}{4}\)
\(\Rightarrow x=\frac{5}{4}+2\)
\(\Rightarrow x=\frac{13}{4}\)
Vậy x = \(\frac{13}{4}\)
_Chúc bạn học tốt_
sửa đề câu a và câu b nhá , mik nghĩ đề như này :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
= \(\frac{1}{1}-\frac{1}{215}\)
\(=\frac{214}{215}\)
b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)
\(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)
\(A\cdot2=\frac{214}{215}\)
\(A=\frac{214}{215}:2\)
\(A=\frac{107}{215}\)
\(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+\frac{1}{11\times13}\)
\(=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}+\frac{2}{11\times13}\right)\)
\(=\frac{1}{2}\times\left(\frac{3-1}{1\times3}+\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+\frac{9-7}{7\times9}+\frac{11-9}{9\times11}+\frac{13-11}{11\times13}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{13}\right)=\frac{6}{13}\)
Do đó ta có:
\(\frac{6}{13}\times y=\frac{3}{5}\)
\(\Leftrightarrow y=\frac{13}{10}\).
CM: \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\) = \(\dfrac{n+1}{2n+1}\)
Ta có:
VT = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\)+....+\(\dfrac{2}{\left(2n+1\right)\left(2n+3\right)}\))
VT = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)+....+ \(\dfrac{1}{2n+1}\) - \(\dfrac{1}{2n+3}\))
VT = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{2n+3}\) )
VT = \(\dfrac{1}{2}\) \(\times\)( \(\dfrac{2n+3}{2n+3}\) - \(\dfrac{1}{2n+3}\))
VT = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{2n+2}{2n+3}\)
VT = \(\dfrac{1}{2}\) \(\times\)\(\dfrac{2\times\left(n+1\right)}{2n+3}\)
VT = \(\dfrac{n+1}{2n+3}\) = VP (đpcm)
\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{\left(2n+1\right)x\left(2x+3\right)}=\frac{n+1}{2n+3}\)
=>\(2x\left(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{\left(2n+1\right)x\left(2n+3\right)}\right)=2x\frac{n+1}{2n+3}\)
=>\(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{\left(2n+1\right)\left(2n+3\right)}=\frac{2n+2}{2n+3}\)
=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n+1}-\frac{1}{2n+3}=\frac{2n+2}{2n+3}\)
=>\(1-\frac{1}{2n+3}=\frac{2n+2}{2n+3}\)
=>\(\frac{2n+2}{2n+3}=\frac{2n+2}{2n+3}\)
=>.....