Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 x 2 + 2 x 3 + ....... + 10 x 11
3A = 1 x 2 x 3 + 2 x 3 x 3 + ..........+ 10 x 11 x 3
3A = 1 x 2 x (3-0) + 2 x 3 x (4-1) + .......... + 10 x 11 x (12 -9)
3A = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + ........... + 10 x 11 x 12 - 9 x 10 x 11
3A = (1 x 2 x 3 - 1 x 2 x 3) + ( 2 x 3 x 4 - 2 x 3 x 4) +............ + 10 x 11 x 12
3A = 10 x 11 x 12 = 1320
A = 1320 : 3 = 440
Gọi biểu thức trên là A, ta có :
A= 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101 A = 99x100x101 : 3 A = 333300
1/1.2 +1/2.3 +1/3.4 +....+1/99.100
=1-1/2+1/2-1/3+1/3-14+.....+1/99-1/100
=1-1/100
=99/100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{x\left(x+1\right)}=\frac{99}{100}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{100}\)
\(1-\frac{1}{x+1}=\frac{99}{100}\)
=> \(\frac{1}{x+1}=1-\frac{99}{100}=\frac{1}{100}\)
=> x+1 = 100
=> x = 100 - 1
=> x = 99
b1
a) \(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{5}-\dfrac{1}{10}\)
\(=\dfrac{2}{10}-\dfrac{1}{10}\)
\(=\dfrac{1}{10}\)
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{1}-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
c) \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\)
\(=\dfrac{1}{3}-\dfrac{1}{11}\)
\(=\dfrac{8}{33}\)
d) \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=\dfrac{1}{3}-\dfrac{1}{101}\)
\(=\dfrac{98}{303}\)
(1-1/2)(1-1/3)(1-1/4)….(1-1/2002).x=1-1/1x2-1/2x3-1/3x4-...1/2002x2003 ae ghi lời giải jup mình nhé. Tìm x
Gọi \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)....\left(1-\frac{1}{2002}\right).x\)
\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}....\frac{2001}{2002}.x=\frac{x}{2002}\)
Gọi \(B=1-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{2002.2003}\)
=>\(B=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2002.2003}\right)\)
\(\Rightarrow B=1-\left(1-\frac{1}{2003}\right)=1-\frac{2002}{2003}=\frac{1}{2003}\)
\(\Rightarrow\frac{x}{2002}=\frac{1}{2003}\Rightarrow x=\frac{2002}{2003}\)
\(\frac{1313}{1212}:x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5}\)
\(\frac{1313}{1212}:x=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}\)
\(\frac{1313}{1212}:x=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}\)
\(\frac{1313}{1212}:x=\frac{4}{5}+\frac{1}{5}\)
\(\frac{1313}{1212}:x=1\)
\(x=\frac{1313}{1212}:1\)
\(x=\frac{13}{12}\)
Lời giải
\(\frac{1313}{1212}:x=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}\)
\(\frac{1313}{1212}:x=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}\)
\(\frac{1313}{1212}:x=\frac{4}{5}+\frac{1}{5}\)
\(x=\frac{1313}{1212}:1\)
\(x=\frac{13}{12}\)
\(\frac{9}{10}.100-\left(\frac{5}{2}\left(y+\frac{206}{100}\right)\right):\frac{1}{2}=89\)
\(90-\left(\frac{5}{2}\left(y+\frac{103}{50}\right)\right)=89.\frac{1}{2}\)
\(90-\left(\frac{5}{2}\left(y+\frac{103}{50}\right)\right)=\frac{89}{2}\)
\(\frac{5}{2}\left(y+\frac{103}{50}\right)=90-\frac{89}{2}\)
\(\frac{5}{2}\left(y+\frac{103}{50}\right)=\frac{180}{2}-\frac{89}{2}\)
\(\frac{5}{2}\left(y+\frac{103}{50}\right)=\frac{91}{2}\)
\(y+\frac{103}{50}=\frac{91}{2}.\frac{2}{5}\)
\(y+\frac{103}{50}=\frac{91}{5}\)
\(y=\frac{91}{5}-\frac{103}{50}\)
\(y=\frac{910}{50}-\frac{103}{50}\)
\(y=\frac{807}{50}\)