K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

Này nhớ này nhớ đã học lớp 9 rồi mf còn hỏi ba cái câu lăng nhăng này có tin tôi cho chị xuống lớp 1 không hử. Xuống đi chị dạy cho

3 tháng 10 2021

Anh hoc lớp 1 hay lớp 9 vây anh ?

Câu này dể mà .

Toán lớp 1 luôn đó anh .

1 công 1 tức nhiên băng 2 rồi

30 tháng 11 2021

Trần Ngọc Anh Tú: Đúng rồi đó thôi xuông lớp  1 đi em chị dạy cho

8 tháng 5 2016

P(x)=x(x+3)(x+1)(x+2)+1

P(x)=(x2+3x)(x2+3x+2)+1

Đặt x2+3x=a

Ta có:

P(x)=a(a+2)+1

P(x)=a2+2a+1

P(x)=(a+1)2

Vậy P(x)=(x2+3x)2

16 tháng 7 2016

Ta có: \(\frac{x-x^2+1}{x-x^2-1}< 1\Leftrightarrow\frac{x-x^2+1}{x-x^2-1}-1< 0\)

\(\Leftrightarrow\frac{x-x^2+1}{x-x^2-1}-\frac{x-x^2-1}{x-x^2-1}< 0\)

\(\Leftrightarrow\frac{2}{x-x^2-1}< 0\Leftrightarrow x-x^2-1< 0\)

\(\Leftrightarrow x^2-x+1>0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(đúng với mọi x)

Suy ra đpcm.

13 tháng 3 2017

1 + 1 = 2

nhưng tớ hết lượt kết bạn rồi. HIHI

13 tháng 3 2017

=2 k cho mình nha . thank , kb nha

26 tháng 7 2016

Hỏi đáp Toán

27 tháng 7 2016

Hai câu cuối ko thấu rỏ bạn ơi

 

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

28 tháng 8 2017

1/ \(x^3+2=3\sqrt[3]{3x-2}\)

Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ

\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)

Lấy trên - dưới ta được

\(x^3-a^3+3x-3a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)

\(\Leftrightarrow x=a\)

\(\Leftrightarrow x=\sqrt[3]{3x-2}\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Các bạn chỉ mình ! Bài này là bài Có biểu thứcvà đây là phần c ) Tìm x để \(P< -\dfrac{1}{2}\), mình giải ra rồi P = \(-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{2}\). Mình nghĩ ra mấy cách như thế này nhưng không biết nó cứ như nào ấy Cách 1 : Chuyển vế \(-\dfrac{1}{2}\) sang thì sẽ ra \(-\dfrac{3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\) , giải ra cũng ra kết quả là x<9* Nhưng cho mình hỏi về cách này : Mình nghĩ...
Đọc tiếp

Các bạn chỉ mình ! 

Bài này là bài Có biểu thức

và đây là phần c ) Tìm x để \(P< -\dfrac{1}{2}\), mình giải ra rồi P = \(-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{2}\). Mình nghĩ ra mấy cách như thế này nhưng không biết nó cứ như nào ấy 

Cách 1 : Chuyển vế \(-\dfrac{1}{2}\) sang thì sẽ ra \(-\dfrac{3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\) , giải ra cũng ra kết quả là x<9

* Nhưng cho mình hỏi về cách này : Mình nghĩ là \(-\dfrac{3}{\sqrt{x}+3}\) đang nhỏ hơn \(-\dfrac{1}{2}\left(-0,5\right)\) , nó đang nhỏ hơn -0,5 mà nếu chuyển vế sang thì \(-\dfrac{3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\) ( mình nghĩ nếu nhỏ hơn 0 thì không thể nhỏ hơn -0,5 được ) , nhưng tại sao nó vẫn ra kết quả vậy ạ . Giair thích cho mình chỗ mà mình đang bị nhầm lẫn và sửa giúp mình nhá ! 

Cách 2 : Vẫn đê nguyên như cũ \(-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{2}\) ( vì \(\sqrt{x}+3>0\) , 2>0 ) nên là mình nhân chéo . Mình lấy 1 công thức tổng quát : \(-\dfrac{a}{b}< -\dfrac{c}{d}\) 

* Nếu mà mình nhân theo kiểu \(-a.d< -c.b\)  và 1 kiểu khác \(b.\left(-c\right)< \left(-a\right).d\) hai kiểu này nó lại khác nhau mà làm theo kiểu thứ nhất thì nó lại đúng vẫn ra x<9 . Các bạn cũng chỉ mình chỗ sai nhé ạ và giúp mình sửa ạ 

Chị  Akai Haruma  , chị giúp em với ạ ! 

 

 

3
NV
25 tháng 7 2021

Tại sao em lại nghĩ nhỏ hơn 0 thì không nhỏ hơn -0.5 được?

\(-3< 0\) nhưng \(-3< -0.5\) vẫn đúng đó thôi, 2 điều này đâu liên quan đâu nhỉ?

Khi nhân chéo 1 BPT thì: nếu mẫu số luôn dương BPT sẽ giữ nguyên chiều, nếu mẫu số luôn âm BPT sẽ đảo chiều.

Với a;b;c;d dương:

Khi em để dạng \(-\dfrac{a}{b}< -\dfrac{c}{d}\) và nhân chéo: \(-ad< -bc\) (nghĩa là nhân b, d lên, 2 đại lượng này dương nên BPT giữ nguyên chiều, đúng)

Còn "kiểu khác" kia của em \(b.\left(-c\right)< \left(-a\right).d\) nó từ bước nào ra được nhỉ?

25 tháng 7 2021

thì vì cái P đó nó nhỏ hơn -0,5 nên bạn chuyển vế qua thành P+0,5<0 vẫn là 1 cách làm đúng (mình còn hay dùng cách này nữa mà)

còn khúc bạn lập luận vì nhỏ hơn 0 nên vẫn chưa chắc nhỏ hơn -0,5 có lẽ là bạn quên cái khúc mà nhỏ hơn 0 là bạn đã + 0,5 vào rồi nên nó ko phải là P nữa

và bài toán này có nhiều cách giải,bạn có thể làm như cách 1 và 2 cũng được,theo mình thì cách 2 mình ít khi làm vì phải cẩn thận ngồi xem dấu,cả 2 vế cùng dấu mới làm vậy được nên cũng hơi khó khăn,đó là theo mình thôi,còn bạn làm cách nào cũng được