K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

banh

23 tháng 12 2016

hay đấy

9 tháng 2 2022

1+1=3 à

nếu sai mong bn thông cảm

~HT~

K cho mình nha cảm ơn các bn

@@@@@@@@@@@@@@@@@@@@@@@

20 tháng 3 2022

Bằng 11 đó

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Áp dụng định lí cosin trong tam giác OAB, ta có:

\(\begin{array}{l}\cos O = \frac{{O{A^2} + O{B^2} - A{B^2}}}{{2.OA.OB}} = \frac{{{2^2} + {2^2} - 3,{1^2}}}{{2.2.2}} \approx  - 0,2\\ \Rightarrow \widehat {xOy} \approx {102^o}\end{array}\)

16 tháng 11 2023

là số liền trước của số đó

16 tháng 11 2023

vậy a là số liền sau của 0 mà a là số tự nhiên

NV
3 tháng 3 2022

Giữ nguyên bình phương và xét dấu như bình thường

Em bỏ bình phương nên xét dấu bị sai dẫn đến kết quả sai

3 tháng 3 2022

A, ra là vậy. Em biết mình sai chỗ nào rồi. Cảm ơn thầy ạ. 

2 tháng 4 2021

\(1+cota+cot^2a+cot^3a\)

\(=1+\dfrac{cosa}{sina}+\dfrac{cos^2a}{sin^2a}+\dfrac{cos^3a}{sin^3a}\)

\(=\left(1+\dfrac{cosa}{sina}\right)\left(1+\dfrac{cos^2a}{sin^2a}\right)\)

\(=\dfrac{sina+cosa}{sina}.\dfrac{sin^2a+cos^2a}{sin^2a}\)

\(=\dfrac{cosa+sina}{sin^3a}\)

NV
12 tháng 4 2021

15.

\(\Delta'=m^2+m-2>0\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\)

Đáp án B

16.

\(\dfrac{\pi}{2}< a< \pi\Rightarrow\dfrac{\pi}{4}< \dfrac{a}{2}< \dfrac{\pi}{2}\Rightarrow\dfrac{\sqrt{2}}{2}< sin\dfrac{a}{2}< 1\Rightarrow\dfrac{1}{2}< sin^2\dfrac{a}{2}< 1\)

\(sina=\dfrac{3}{5}\Leftrightarrow sin^2a=\dfrac{9}{25}\Leftrightarrow4sin^2\dfrac{a}{2}.cos^2\dfrac{a}{2}=\dfrac{9}{25}\)

\(\Leftrightarrow sin^2\dfrac{a}{2}\left(1-sin^2\dfrac{a}{2}\right)=\dfrac{9}{100}\Leftrightarrow sin^4\dfrac{a}{2}-sin^2\dfrac{a}{2}+\dfrac{9}{100}=0\)

\(\Rightarrow\left[{}\begin{matrix}sin^2\dfrac{a}{2}=\dfrac{1}{10}< \dfrac{1}{2}\left(loại\right)\\sin^2\dfrac{a}{2}=\dfrac{9}{10}\end{matrix}\right.\)

\(\Rightarrow sin\dfrac{a}{2}=\dfrac{3\sqrt{10}}{10}\)

NV
12 tháng 4 2021

17.

Áp dụng công thức trung tuyến:

\(AM=\dfrac{\sqrt{2\left(AB^2+AC^2\right)-BC^2}}{2}=\dfrac{\sqrt{201}}{2}\)

18.

\(\Leftrightarrow x^2+2x+4>m^2+2m\) ; \(\forall x\in\left[-2;1\right]\)

\(\Leftrightarrow m^2+2m< \min\limits_{\left[-2;1\right]}\left(x^2+2x+4\right)\)

Xét \(f\left(x\right)=x^2+2x+4\) trên \(\left[-2;1\right]\)

\(-\dfrac{b}{2a}=-1\in\left[-2;1\right]\) ; \(f\left(-2\right)=4\) ; \(f\left(-1\right)=3\) ; \(f\left(1\right)=7\)

\(\Rightarrow\min\limits_{\left[-2;1\right]}\left(x^2+2x+4\right)=f\left(1\right)=3\)

\(\Rightarrow m^2+2m< 3\Leftrightarrow m^2+2m-3< 0\)

\(\Rightarrow-3< m< 1\Rightarrow m=\left\{-2;-1;0\right\}\)

Đáp án C

16 tháng 4 2020

| x + 3 | - 6x + 1 = | x + 1 | 

<=> | x + 3 | - | x + 1 | - 6x + 1 = 0 

Phương trình này em xét dấu và kẻ bảng  rồi chia trường hợp:

hãy bình tinh vào đừng có cuống lên thì lại làm sai