Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lim x → 0 1 x 1 x + 1 − 1 = lim x → 0 1 x . − x x + 1 = lim x → 0 − 1 x + 1 = − 1.
Chọn đáp án A
\(2cosx+3sinx+\dfrac{1}{3}cos2x-sin2x=\dfrac{8}{3}\)
\(\Leftrightarrow6cosx+9sinx+cos2x-3sin2x-8=0\)
\(\Leftrightarrow6cosx-6sinx.cosx+9sinx-9+1+1-2sin^2x=0\)
\(\Leftrightarrow6cosx\left(1-sinx\right)-9\left(1-sinx\right)+2\left(1-sinx\right)\left(1+sinx\right)=0\)
\(\Leftrightarrow\left(1-sinx\right)\left(6cosx-9+2+2sinx=0\right)\)
\(\Leftrightarrow\left(1-sinx\right)\left(6cosx+2sinx-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1-sinx=0\\6cosx+2sinx=7\end{matrix}\right.\)
TH1: \(1-sinx=0\Rightarrow sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
TH2: \(6cosx+2sinx=7\) (1)
Do \(6^2+2^2=40< 7^2=49\Rightarrow\) pt (1) vô nghiệm
Vậy pt đã cho có nghiệm \(x=\dfrac{\pi}{2}+k2\pi\)
a.
Chọn 1 nam từ 9 nam có 9 cách
Chọn 1 nữ từ 3 nữ có 3 cách
\(\Rightarrow\) Có \(9.3=27\) cách chọn nhóm 1 nam 1 nữ
b.
Chọn 2 nhà toán học từ 8 nahf toán học: \(C_8^2\) cách
Chọn 2 nhà vật lý từ 4 nhà vật lý: \(C_4^2\) cách
\(\Rightarrow C_8^2.C_4^2\) cách lập
c.
Các trường hợp thỏa mãn: (1 nhà toán học nữ, 2 nhà vật lý nam), (1 nhà toán học nữ, 1 nhà toán học nam, 1 nhà vật lý nam), (2 nhà toán học nữ, 1 nhà vật lý nam)
\(\Rightarrow C_3^1.C_4^2+C_3^1.C_5^1.C_4^1+C_3^2.C_4^1\) cách
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:
u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15
Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:
n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10
Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5
Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:
(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1
Vậy số hạng thứ mấy có giá trị 137137 là u1.
Câu 1:
\(\lim _{x\to +\infty}(2x-1-\sqrt{4x^2-4x-3})=\lim_{x\to +\infty}\frac{(2x-1)^2-(4x^2-4x-3)}{2x-1+\sqrt{4x^2-4x-3}}\) (liên hợp)
\(=\lim_{x\to +\infty}\frac{4}{2x-1+\sqrt{4x^2-4x-3}}=4\lim_{x\to +\infty}\frac{1}{2x-1+\sqrt{4x^2-4x-3}}\)
Ta thấy với \(x\to +\infty\Rightarrow 2x-1+\sqrt{4x^2-4x-3}\to +\infty\)
Do đó: \(\lim_{x\to +\infty}\frac{1}{2x-1+\sqrt{4x^2-4x-3}}=0\) (theo dạng \(\lim _{t\to \infty}\frac{1}{t}=0\) )
\(\Rightarrow \lim _{x\to +\infty}(2x-1-\sqrt{4x^2-4x-3})=0\)
Câu 3:
\(\lim_{x\to 1+} (x^3-1)\sqrt{\frac{x}{x^2-1}}=\lim_{x\to 1+}(x^2+x+1)\sqrt{\frac{x(x-1)^2}{x^2-1}}\)
\(=\lim_{x\to 1+}(x^2+x+1)\sqrt{\frac{x(x-1)}{x+1}}=(1+1+1)\sqrt{\frac{1.0}{1+1}}=0\)
Câu 2:
\(\lim_{x\to 3}\frac{\sqrt{2x^2-2}-\sqrt{4x-3}+2x-7}{9-x^2}=\lim_{x\to 3}\frac{\sqrt{2x^2-2}-4}{9-x^2}-\lim_{x\to 3}\frac{\sqrt{4x-3}-3}{9-x^2}+\lim_{x\to 3}\frac{2x-6}{9-x^2}\)
Ta có:
\(\lim_{x\to 3}\frac{2x^2-2-16}{(\sqrt{2x^2-2}+4)(9-x^2)}=\lim_{x\to 3}\frac{2(x^2-9)}{(\sqrt{2x^2-2}+4)(9-x^2)}=\lim_{x\to 3}\frac{-2}{\sqrt{2x^2-2}+4}=\frac{-1}{4}\) (1)
\(\lim_{x\to 3}\frac{\sqrt{4x-3}-3}{9-x^2}=\lim_{x\to 3}\frac{4x-3-9}{(\sqrt{4x-3}+3)(9-x^2)}=\lim_{x\to 3}\frac{4(x-3)}{(\sqrt{4x-3}+3)(9-x^2)}\)
\(=\lim_{x\to 3}\frac{-4}{(\sqrt{4x-3}+3)(3+x)}=-\frac{1}{9}\) (2)
\(\lim _{x\to 3}\frac{2x-6}{9-x^2}=\lim_{x\to 3}\frac{2(x-3)}{9-x^2}=\lim_{x\to 3}\frac{-2}{x+3}=\frac{-1}{3}\) (3)
Từ \((1); (2); (3)\Rightarrow \lim_{x\to 3}\frac{\sqrt{2x^2-2}-\sqrt{4x-3}+2x-7}{9-x^2}=\frac{-1}{4}+\frac{1}{9}-\frac{1}{3}=\frac{-17}{36}\)
Cho cấp số cộng \(\left(U_n\right)\) có \(S_n=2n^2-3n\). Giá trị U1 và d là
Ta có: \(\frac{2n}{n^2+1}=\frac{9}{41}\Rightarrow9n^2-82n+9=0\)
\(\Rightarrow n=9\)
\(\Rightarrow\frac{9}{41}\) là số hạng thứ 9 của dãy số.
(Không chắc lắm ạ!)
2 nha
k cho mình
hok tốt
2
Bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb