K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2022
Tự trả lời vậy mà còn hỏi :-)
21 tháng 10 2017

Do nên  2 3 - 1 > 1 nên 

Chọn A

20 tháng 8 2018

Chọn A

y'=1/3*3x^2+1/2*2x(m-1)+(2m-1)

=x^2+x(m-1)+2m-1

a: y đồng biến trên R thì y'>0 với mọi x thuộc R

Δ=(m-1)^2-4(2m-1)

=m^2-2m+1-8m+4=m^2-10m+5

Để y'>0 với mọi x thuộc R thì m^2-10m+5<0

=>5-2*căn 5<m<5+2căn 5

b: y đồng biến trên (-vô cực;-2) và (0;1) khi y'>0 với mọi x thuộc (-vô cực;-2) và (0;1)

y'=x^2+x(m-1)+2m-1

=x^2+xm-x+2m-1

=m(x+2)+x^2-x-1

y'>0 với x thuộc (-vô cực;-2)

=>m>-x^2+x+1/(x+2) với x thuộc (vô cực;-2)

g(x)=-x^2+x+1/(x+2)

g'=(-x^2+x+1)'(x+2)-(-x^2+x+1)(x+2)'/(x+2)^2

=(x+2+x^2-x-1)/(x+2)^2=(x^2+1)/(x+2)^2>0 với mọi x

=>m thuộc (-vô cực;-2)

Tương tự, ta cũng được: m thuộc (0;1)

10 tháng 2 2018

21 tháng 5 2016

ta có : \(\begin{cases}AB\perp SH\\AB\perp HF\end{cases}\) \(\Rightarrow AB\perp\left(SHF\right)\Rightarrow\left(SAB\right)\perp\left(SHF\right)\)theo giao tuyến SF

kẻ \(HK\perp SF\) tại K \(\Rightarrow HK\perp\left(SAB\right)\Rightarrow d_{\left(B;\left(SAB\right)\right)}=HK\)

\(HF=\frac{4a}{5}\Rightarrow HK=\frac{a\sqrt{15}}{5}\)

(SAB) chứa SB và song song CD

\(\Rightarrow d_{\left(CD;SB\right)}=d_{\left(CD;\left(SAB\right)\right)}=d_{\left(C;\left(SAB\right)\right)}=CM\)(M là hình chiếu của C lên (SAB))

có : HK//CM \(\Rightarrow\frac{CM}{HK}=\frac{CA}{AH}=5\)\(\left(AC=2a\sqrt{5};AH=\frac{2a\sqrt{5}}{5}\right)\)

\(\Rightarrow CM=5HK=a\sqrt{15}\)

Vậy : \(d_{\left(CD;SB\right)}=a\sqrt{15}\)

21 tháng 5 2016

S D C B A F H E K

22 tháng 2 2017

Đáp án A

5 tháng 3 2018

Chọn C

Gọi A (d; e; f) thì A thuộc mặt cầu (S1): (x - 1)+ (y - 2)+ (z- 3)= 1 có tâm I= (1; 2; 3)bán kính R= 1

B (a; b; c) thì B thuộc mặt cầu (S2): (x - 3)+ (y - 2)+ z= 9 có tâm I= (-3; 2; 0), bán kính R= 3

Ta có I1I2 = 5 > R+ R=> (S1và (S2) không cắt nhau và ở ngoài nhau. 

Dễ thấy F = AB, AB max khi ≡ A1; B ≡ B1

=> Giá trị lớn nhất bằng I1I2 + R+ R= 9.

AB min khi ≡ A2; B ≡ B2 

=> Giá trị nhỏ nhất bằng I1I2 - R- R= 1.

Vậy M - m =8

NV
25 tháng 7 2021

\(y'=\left(x-2\right)^2+2\left(x+1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=4\\x=2\Rightarrow y=0\end{matrix}\right.\)

\(\Rightarrow A\left(0;4\right)\) ; \(B\left(2;0\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(2;-4\right)\Rightarrow AB=\sqrt{2^2+\left(-4\right)^2}=2\sqrt{5}\)

21 tháng 3 2023

TXĐ: D = R

\(y'=3x^2-6x=0\) \(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=2\Rightarrow y=-3\end{matrix}\right.\)

Suy ra 2 điểm cực trị của đồ thị là: A(0; 1) và B(2; -3)

Ptđt đi qua 2 điểm cực trị:

\(\dfrac{x}{2}=\dfrac{y-1}{-4}\) \(\Rightarrow-2x=y-1\) \(\Leftrightarrow y=-2x+1\left(d'\right)\)

Vì \(d\perp d'\) \(\Rightarrow\left(2m-1\right)\cdot\left(-2\right)=-1\) \(\Leftrightarrow m=\dfrac{3}{4}\)

Chọn B