Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) \(0,7\left(6\right)=\dfrac{76-7}{90}=\dfrac{69}{90}=\dfrac{23}{30}\)
b) ta có: \(0,2\left(148\right)=\dfrac{2148-2}{9990}=\dfrac{2146}{9990}=\dfrac{29}{135}\)
do đó: \(1,2\left(148\right)=1+0,2\left(148\right)=1+\dfrac{29}{135}=\dfrac{164}{135}\)
3. a) \(A=x+\frac{1}{x-1}=x-1+\frac{1}{x-1}+1\ge2\sqrt{\left(x-1\right)\cdot\frac{1}{x-1}}+1=3\)
Dấu "=" \(\Leftrightarrow x-1=\frac{1}{x-1}\Leftrightarrow x=2\)
Min \(A=3\Leftrightarrow x=2\)
b) \(B=\frac{4}{x}+\frac{1}{4y}=\frac{4}{x}+4x+\frac{1}{4y}+4y\cdot-4\left(x+y\right)\)
\(\ge2\sqrt{\frac{4}{x}\cdot4x}+2\sqrt{\frac{1}{4y}\cdot4y}-4\cdot\frac{5}{4}=5\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}\frac{4}{x}=4x\\\frac{1}{4y}=4y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)
Min \(B=5\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)
4. Chắc đề là tìm min???
\(C=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)
\(\ge2\sqrt{\left(a+b\right)\cdot\frac{1}{a+b}}+\frac{3}{1}=5\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=b\\a+b=\frac{1}{a+b}\\a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)
Min \(C=5\Leftrightarrow a=b=\frac{1}{2}\)
1. Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(\left(\frac{1}{p-a}+\frac{1}{p-b}\right)+\left(\frac{1}{p-b}+\frac{1}{p-c}\right)+\left(\frac{1}{p-c}+\frac{1}{p-a}\right)\)
\(\ge\frac{4}{2p-a-b}+\frac{4}{2p-b-c}+\frac{4}{2p-a-c}\) \(=\frac{4}{c}+\frac{4}{a}+\frac{4}{b}\)
\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Dấu "=" \(\Leftrightarrow a=b=c\)
2. Áp dụng bđt Cauchy ta có :
\(a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b-1+1}{2}=\frac{ab}{2}\) . Dấu "=" \(\Leftrightarrow b-1=1\Leftrightarrow b=2\)
+ Tương tự : \(b\sqrt{a-1}\le\frac{ab}{2}\). Dấu "=" \(\Leftrightarrow a=2\)
Do đó: \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\). Dấu "=" \(\Leftrightarrow a=b=2\)
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) ( đúng )
Dấu "=" \(\Leftrightarrow a=b\)
a) Áp dụng BĐT trên ta có:
\(\Sigma\left(\frac{1}{a^3+b^3+abc}\right)\le\Sigma\left(\frac{1}{ab\left(a+b\right)+abc}\right)=\Sigma\left[\frac{1}{ab}\cdot\left(\frac{1}{a+b+c}\right)\right]=\frac{1}{a+b+c}\cdot\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{a+b+c}{\left(a+b+c\right)\cdot abc}=\frac{1}{abc}\)
Dấu "=" khi \(a=b=c\)
b) \(\Sigma\left(\frac{1}{a^3+b^3+1}\right)\le\Sigma\left(\frac{1}{ab\left(a+b\right)+abc}\right)=\Sigma\left[\frac{1}{ab}\cdot\left(\frac{1}{a+b+c}\right)\right]=\frac{1}{abc}=1\)
Dấu "=" khi \(a=b=c=1\)
c) \(\Sigma\left(\frac{1}{a+b+1}\right)\le\Sigma\left(\frac{1}{\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)+\sqrt[3]{abc}}\right)=\Sigma\left[\frac{1}{\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)}\right]\)
\(=\frac{1}{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}\cdot\left(\frac{1}{\sqrt[3]{ab}}+\frac{1}{\sqrt[3]{bc}}+\frac{1}{\sqrt[3]{ca}}\right)=\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\cdot\sqrt[3]{abc}}=\frac{1}{\sqrt[3]{abc}}=1\)
Dấu "=" khi \(a=b=c=1\)
Áp dụng bđt Cauchy hết nha
a) \(A=\sqrt{\left(a+1\right)\cdot\frac{3}{2}}\le\frac{a+1+\frac{3}{2}}{2}=\frac{a+\frac{5}{2}}{2}\). Dấu "=" \(\Leftrightarrow a+1=\frac{3}{2}\Leftrightarrow a=\frac{1}{2}\)
+ Tương tự : \(\sqrt{\left(b+1\right)\cdot\frac{3}{2}}\le\frac{b+\frac{5}{2}}{2}\) Dấu "=" \(\Leftrightarrow b=\frac{1}{2}\)
Do đó : \(\sqrt{\frac{3}{2}}\cdot A\le\frac{a+b+5}{2}=3\) \(\Rightarrow A\le\sqrt{6}\)
Dấu "=" \(\Leftrightarrow a=b=\frac{1}{2}\)
b) \(B=x\cdot x\left(1-2x\right)\le\left(\frac{x+x+1-2x}{3}\right)^3=\frac{1}{27}\)
Dấu "=" \(\Leftrightarrow x=1-2x\Leftrightarrow x=\frac{1}{3}\)
c) \(C=\frac{1}{2}\left(2x+2\right)\left(1-2x\right)\le\frac{1}{2}\left(\frac{2x+2+1-2x}{2}\right)^2=\frac{9}{8}\)
Dấu "=" \(\Leftrightarrow2x+2=1-2x\Leftrightarrow x=-\frac{1}{4}\)
1.
C/m bổ đề: \(a^3-b^3\ge\frac{1}{4}\left(a^3-b^3\right)\) với \(\forall a,b\in R,a\ge b\)
\(\Leftrightarrow4a^3-4b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\ge0\)
\(\Leftrightarrow3a^3+3a^2b-3ab^2-3b^3\ge0\)
\(\Leftrightarrow3\left(a^2-b^2\right)\left(a+b\right)\ge0\)
\(\Leftrightarrow3\left(a+b\right)^2\left(a-b\right)\ge0\)(đúng)
Theo bài ra: \(a^3-b^3\ge3a-3b-4\)
\(\Leftrightarrow\) Cần c/m: \(\left(a-b\right)^3\ge12a-12b-16\)(1)
Thật vậy:
\(\left(1\right)\)\(\Leftrightarrow\left(a-b\right)^3-12\left(a-b\right)+16\ge0\)
\(\Leftrightarrow\left[\left(a-b\right)^3-8\right]-12\left(a-b-2\right)\ge0\)
\(\Leftrightarrow\left(a-b-2\right)\left[\left(a-b\right)^2+2\left(a-b\right)+4\right]-12\left(a-b-2\right)\ge0\)
\(\Leftrightarrow\left(a-b-2\right)\left[\left(a-b\right)^2+2\left(a+b\right)-8\right]\ge0\)
\(\Leftrightarrow\left(a-b-2\right)^2\left(a-b+4\right)\ge0\) (đúng với mọi a,b thỏa mãn \(a,b\in R,a\ge b\))
2.
\(BĐT\Leftrightarrow\frac{1}{\frac{a+b}{ab}}+\frac{1}{\frac{c+d}{cd}}\le\frac{1}{\frac{a+b+c+d}{\left(a+c\right)\left(b+d\right)}}\)
\(\Leftrightarrow\frac{ab}{a+b}+\frac{cd}{c+d}\le\frac{\left(a+c\right)\left(b+d\right)}{a+b+c+d}\)
\(\Leftrightarrow\frac{ab\left(c+d\right)+cd\left(a+b\right)}{\left(a+b\right)\left(c+d\right)}\le\)\(\frac{ab+ad+bc+cd}{a+b+c+d}\)
\(\Leftrightarrow\frac{abc+abd+acd+bcd}{ac+ad+bc+bd}\le\frac{ab+ad+bc+cd}{a+b+c+d}\)
\(\Leftrightarrow\left(ad+ab+bc+cd\right)\left(ac+ad+bc+bd\right)\ge\)\(\left(a+b+c+d\right)\left(abc+abd+acd+bcd\right)\)
\(\Leftrightarrow\left(ad\right)^2-2abcd+\left(bc\right)^2\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (đúng với mọi a,b,c,d>0)
a/ \(\overrightarrow{u_d}=\overrightarrow{AB}=\left(-2;5\right)\)
b/ \(\overrightarrow{u_d}=Oy=\left(0;1\right)\)
c/ \(\overrightarrow{u_d}=\overrightarrow{n_{d'}}=\left(3;-2\right)\)