K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2024

$\frac {1}{1 \times 6} + \frac {1} {6 \times 11} + \frac {1}{11 \times 16} + ... + \frac {1}{46 \times 51}$ 

$ = \frac {1}{5} \times (\frac {1}{1 \times 6} + \frac{1}{6 \times 11} + \frac {1}{11 \times 16} + ... + \frac {1} {46 \times 51})$

$ = \frac {1}{5} \times ( 1 - \frac {1}{6} + \frac {1}{6} - \frac {1}{11} + ... + \frac {1}{46} - \frac {1}{51})$

$ = \frac {1}{5} \times ( 1 - \frac {1}{51})$

$ = \frac {1}{5} \times \frac {50}{51}$

$ = \frac {10}{51}$

9 tháng 9 2024

cho e hỏi là chỗ 1/1x6 xong xuống dưới lại là 1 - 1/6 vậy ạ

6 tháng 10 2023

\(A=\dfrac{1}{1\cdot6}-\dfrac{1}{6\cdot11}-\dfrac{1}{11\cdot16}-\dfrac{1}{16\cdot21}-...-\dfrac{1}{46\cdot51}\)

\(=\dfrac{1}{6}-\left(\dfrac{1}{6\cdot11}+\dfrac{1}{11\cdot16}+\dfrac{1}{16\cdot21}+...+\dfrac{1}{46\cdot51}\right)\)

\(=\dfrac{1}{6}-\dfrac{1}{5}\left(\dfrac{5}{6\cdot11}+\dfrac{5}{11\cdot16}+\dfrac{5}{16\cdot21}+...+\dfrac{5}{46\cdot51}\right)\)

\(=\dfrac{1}{6}-\dfrac{1}{5}\left(\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+...+\dfrac{1}{46}-\dfrac{1}{51}\right)\)

\(=\dfrac{1}{6}-\dfrac{1}{5}\left(\dfrac{1}{6}-\dfrac{1}{51}\right)\)

\(=\dfrac{1}{6}-\dfrac{1}{5}\cdot\dfrac{5}{34}\)

\(=\dfrac{1}{6}-\dfrac{1}{34}\)

\(=\dfrac{7}{51}\)

Vậy \(A=\dfrac{7}{51}\)

6 tháng 10 2023

C.ơn chị ah.

9 tháng 8 2019

Ta có : \(A=\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+\frac{1}{11\cdot16}+...+\frac{1}{(5n+1)(5n+6)}\)

\(=\frac{1}{5}\cdot\left[\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{5}{(5n+1)(5n+6)}\right]\)

\(=\frac{1}{5}\cdot\left[1-\frac{1}{5n+6}\right]=\frac{1}{5}\cdot\frac{5n+6-1}{5n+6}=\frac{1}{5}\cdot\frac{5(n+1)}{5n+6}=\frac{n+1}{5n+6}\)

1 tháng 4 2016

ta có : 1/1.6+1/6.11+1/11.16+....+1/96.101

= 1/5.5/1.6+ 1/5.5/6.11+1/5.5/11.16+...+1/5.5/96.101

=1/5 . ( 5/1.6+5/6.11+5/11.16+...+5/96.101)

=1/5 . ( 1/1-1/6 +1/6-1/11+1/11-1/16+....+1/96-1/101)

=1/5 . (1/1-1/101)

=1/5 . 100/101

= 20/101

1 tháng 4 2016

5A=\( 1-{1\over 6}+{1\over 6}-{1\over 11}+...{1\over 96}-{1\over 101}\)

  =\(1- {1 \over 101}={100 \over 101}\)

suy ra A =\({20 \over 101}\)

7 tháng 4 2017

\(C=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)\)

\(C=\frac{1}{5}\left(1-\frac{1}{101}\right)\)

\(C=\frac{1}{5}.\frac{100}{101}=\frac{20}{101}\)

7 tháng 4 2017

\(5C=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\)

\(5C=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\)

\(5C=1-\frac{1}{101}\)

\(C=\frac{100}{\frac{101}{5}}\)

12 tháng 8 2016

bạn ơi hình như đề sai ở chỗ cuối cùng kia kìa chỗ đó có phải : x . x ( 1 + 5 ) 

Đúng ko bạn ?????

12 tháng 8 2016

Sai đề

Ta có: \(A=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{5^2}{26\cdot31}\)

\(=5\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{26\cdot31}\right)\)

\(=5\cdot\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5\cdot\left(1-\frac{1}{31}\right)=5\cdot\frac{30}{31}=\frac{150}{31}>1\)

hay A>1(đpcm)

24 tháng 6 2019

A = 1/2 + 1/4 + 1/8 + ... + 1/128

A = 1/2^1 + 1/2^2 + 1/2^3 + ... + 1/2^7

2A = 1 + 1/2 + 1/2^2 + ... + 1/2^6

2A - A = 1 - 1/2^7 = A

24 tháng 6 2019

G = 5 - 5^2/1*6  5^2/6*11 - ... - 5^2/101*106

G = -5(-1 + 5/1*6 + 5/6*11 + ... + 5/101*106)

G = -5(-1 + 1 - 1/6 + 1/6 - 1/11 + ... + 1/101 - 1/106)

G = -1.(-1/106)

G = 1/106

20 tháng 1 2017

a)

=\(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)

\(=\frac{2^{12}\left(3^5-3^4\right)}{2^{12}\left(3^6+3^5\right)}-\frac{5^{10}\left(7^3-7^4\right)}{5^9.7^3\left(1+2^3\right)}\)

\(=\frac{3^5-3^4}{3^6+3^5}-\frac{5\left(7^3-7^4\right)}{7^3.3^2}\)

=\(\frac{3^4\left(3-1\right)}{^{ }3^4\left(9+3\right)}-\frac{5.7^3-5.7^4}{7^3.3^2}\)

=\(\frac{1}{6}-\frac{7^3.5\left(1-7\right)}{7^3.3^2}=\frac{1}{6}-\frac{30}{9}=-\frac{19}{6}\)

Vậy A=\(-\frac{19}{6}\)

20 tháng 1 2017

câu b lúc nã mk làm sai rui

dây mới đúng

=\(\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\right)\)

=\(\frac{1}{5}\left(1-\frac{1}{101}\right)=\frac{1}{5}.\frac{100}{101}=\frac{20}{101}\)