Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,4^16
60^15
x^5050
tich cho minh
pheaeeeeeeeeeeeeeeeeeeeeeeeeeeee
a,\(\left(2^{17}+15^4\right).\left(3^{19}-2^{19}\right).\left(4^2-2^4\right)=\left(2^{17}+15^4\right).\left(3^{19}-2^{19}\right).\left(16-16\right)\)
\(=\left(2^{17}+15^4\right).\left(3^{19}-2^{17}\right).0=0\)
b,\(100+98+96+...+4+2-97-95-....-3-1\)
\(=100+98-97+96-95+......+4-3+2-1\)
\(=100+\left(98-97\right)+\left(96-95\right)+.....+\left(4-3\right)+\left(2-1\right)\)
\(=100+49\times1=100+49=149\)
a)=0 vì 24-42=0 số nào nhân vs 0 cũng =0
b) = 100+(98-97)+(96-95)+....+(2-1)
=100+1+1+....+1(có 46 số 1 )
=100+46
=146
a)(217 + 154).(319 - 217).(24 - 42) = 0
b)100+98+96+...+4+2-97-95-...-3-1
= 100 + (98 - 97) + (96 -95) + .... + (4 - 3) + (2 - 1)
= 100 + 1 + 1 + .... + 1 + 1 (98 : 2 = 49 số 1)
= 100 + 49
= 149
\(\frac{15^{16}+1}{15^{17}+1}<\frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow\frac{15^{16}+1}{15^{17}+1}<\frac{15^{15}+1}{15^{16}+1}\)
=> A < B
a ) \(4^{10}.8^{15}\)
\(=\left(2^2\right)^{10}.\left(2^3\right)^{15}\)
\(=2^{20}.2^{45}\)
\(=2^{65}\)
a)\(4^{10}.8^{15}=\left(2^2\right)^{10}.\left(2^3\right)^{15}=2^{2.10}.2^{3.15}=2^{20}.2^{45}=2^{65}\)
b)\(4^{15}.5^{30}=4^{15}.5^{2.15}=4^{15}.\left(5^2\right)^{15}=4^{15}.25^{15}=\left(4.25\right)^{15}=100^{15}\)
c)\(27^{16}.9^{10}=\left(3^3\right)^{16}.\left(3^2\right)^{10}=3^{3.16}.3^{2.10}=3^{48}.3^{20}=3^{68}\)
d)\(72^3.54^2=\left(8.9\right)^3.\left(27.2\right)^2=8^3.9^3.27^2.2^2=\left(2^3\right)^3.\left(3^2\right)^3.\left(3^3\right)^2.2^2=2^{3.3}.3^{2.3}.3^{3.2}.2^2\)
\(=2^9.3^6.3^6.2^2=2^{11}.3^{12}\)
P/S : Lớp 6 rồi tập làm quen dấu ''x'' thành dấu ''.'' đi bạn