K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2021

ai cũng biết sợ trả lời sai thôi

18 tháng 10 2021

hihi

cảm ơn bạn đã bình luận

4 tháng 3 2019

 bằng 4 nha 

4 tháng 3 2019

1 + 1 + 1 + 1 =4

hok tốt

10 tháng 3 2020

@Nguyễn Việt Lâm

NV
11 tháng 3 2020

Đây là 1 tích phân không tính được bạn Thơ ạ

1 + 1 = 2

Thẹc là mụt cou hỏi khó :"<

@Nghệ Mạt

#cua

1+1=2

ui khó thiệt á chắc tui làm sai mất

10 tháng 11 2021

1+1=2

kb nha

10 tháng 11 2021

=mấy vì ghi kết quả sẵn kìa và {mấy}=2

NV
3 tháng 7 2020

Phương trình tham số d1: \(\left\{{}\begin{matrix}x=1+2t\\y=3+3t\\z=2t\end{matrix}\right.\)

Phương trình tham số d2: \(\left\{{}\begin{matrix}x=5+6t'\\y=4t'\\z=5-5t'\end{matrix}\right.\)

Gọi (Q) là mặt phẳng song song (P) và cách (P) 1 khoảng bằng 2 \(\Rightarrow\) pt có dạng \(x-2y-2z-d=0\) (\(d\ne1\))

Gọi \(A\left(d;0;0\right)\) là 1 điểm thuộc (Q)

\(d\left(A;\left(P\right)\right)=2\Leftrightarrow\frac{\left|d+1\right|}{\sqrt{1+4+4}}=2\Leftrightarrow\left|d+1\right|=6\Rightarrow\left[{}\begin{matrix}d=5\\d=-7\end{matrix}\right.\)

Có 2 mp (Q) thỏa mãn: \(\left[{}\begin{matrix}x-2y-2z-5=0\\x-2y-2z+7=0\end{matrix}\right.\)

M là giao điểm (Q) và d1 nên tọa độ M là ...

N là giao điểm (Q) và d2 nên tọa độ N là ...

18 tháng 11 2016

ĐK: -1<x\(\ne\)0

Đặt \(log_3\left(x+1\right)=t\) (t\(\ne\)0)

bpt trở thành \(\frac{1}{3^t}>\frac{1+t}{3^t-1}\)

\(\Leftrightarrow\frac{1+t}{3^t-1}-\frac{1}{3^t}< 0\Leftrightarrow\frac{t.3^t+1}{3^t\left(3^t-1\right)}< 0\)

\(3^t>0\forall t\) nên ta có thể nhân 2 vế của bpt với \(3^t\)

Khi đó, ta có bpt \(\Leftrightarrow\frac{t.3^t+1}{3^t-1}< 0\)

*) Đặt \(f\left(t\right)=t.3^t+1\), f(0)=1

dễ thấy f(t) đồng biến trên tập R

*) Xét 2 trường hợp:

+TRƯỜNG HỢP 1) với t<0 \(\Leftrightarrow3^t< 1\Leftrightarrow3^t-1< 0\) (1)

\(\lim\limits_{t\rightarrow-\infty}\left[f\left(t\right)\right]=1\) nên f(t)>1 với mọi t \(\Leftrightarrow t.3^t+1>1\Rightarrow t.3^t+1>0\forall t\) (2)

kết hợp (1) và (2) ta thấy t<0 thỏa mãn bpt

+TRƯỜNG HỢP 2) với t>0 \(\Leftrightarrow3^t-1>0\) (3)

lại có f(t)>f(0) với mọi t>0 \(\Leftrightarrow t.3^t+1>1\) (4)

kết hợp (3) và (4) ta thấy không thỏa mãn bpt

 

vậy bpt đã cho tương đương t<0\(\Leftrightarrow log_3\left(x+1\right)< 0\Leftrightarrow x+1< 1\Leftrightarrow x< 0\)

kết hợp ĐK ta có -1<x<0

18 tháng 11 2016

Giờ mới trông thấy bài này :)))

NV
21 tháng 12 2020

\(\overrightarrow{NM}=\left(4;-2;2\right)=2\left(2;-1;1\right)\)

Gọi Q là trung điểm MN \(\Rightarrow Q\left(-1;3;2\right)\)

Phương trình mặt phẳng trung trực của MN (đi qua Q và nhận \(\overrightarrow{NM}\) là 1 vecto pháp tuyến) có dạng:

\(2\left(x+1\right)-1\left(y-3\right)+1\left(z-2\right)=0\)

\(\Leftrightarrow2x-y+z+3=0\)

b.

(P) có 1 vecto pháp tuyến là \(\left(1;2;-1\right)\)

Do \(\left(\beta\right)\) song song (P) nên cũng nhận \(\left(1;2;-1\right)\) là 1 vtpt

À thôi bạn ghi sai đề rồi, \(\left(\beta\right)\) chỉ có thể đi qua M hoặc N (1 điểm thôi), không thể đi qua MN được vì MN không song song với (P)

21 tháng 12 2020

Anh ơi

NV
31 tháng 10 2020

Pt hoành độ giao điểm:

\(2x+m=\frac{x+3}{x+1}\Leftrightarrow2x^2+\left(m+1\right)x+m-3=0\)

\(\Delta=\left(m+1\right)^2-8\left(m-3\right)=\left(m-3\right)^2+16>0\)

\(\left\{{}\begin{matrix}x_1+x_2=-\frac{m+1}{2}\\x_1x_2=\frac{m-3}{2}\end{matrix}\right.\)

Ta có: \(MN^2=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2\)

\(=5\left(x_1-x_2\right)^2=5\left(x_1+x_2\right)^2-20x_1x_2\)

\(=5\left(-\frac{m+1}{2}\right)^2-20\left(\frac{m-3}{2}\right)=\frac{5}{4}\left(m-3\right)^2+20\ge20\)

Dấu "=" xảy ra khi \(m=3\)