Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{n^3-1}{n^3+1}=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n+1\right)\left(n^2-n+1\right)}=\frac{\left(n-1\right)\left[\left(n+1\right)^2-\left(n+1\right)+1\right]}{\left(n+1\right)\left(n^2-n+1\right)}\)
\(\Rightarrow u_n=\frac{1.\left(3^2-3+1\right)}{3.\left(2^2-2+1\right)}.\frac{2\left(4^2-4+1\right)}{4.\left(3^2-3+1\right)}.\frac{3\left(5^2-5+1\right)}{5\left(4^2-4+1\right)}...\frac{\left(n-1\right)\left[\left(n+1\right)^2-\left(n+1\right)+1\right]}{\left(n+1\right)\left(n^2-n+1\right)}\)
\(\Rightarrow u_n=\frac{1.2.\left[\left(n+1\right)^2-\left(n+1\right)+1\right]}{\left(2^2-2+1\right).n\left(n+1\right)}=\frac{2n^2+2n+2}{3n^2+3n}\)
\(\Rightarrow lim\left(u_n\right)=lim\frac{2n^2+2n+2}{3n^2+3n}=\frac{2}{3}\)
Đây đều không phải dạng vô định, bạn cứ thay số vô tính như lớp 6 lớp 7 là được:
\(\lim\limits_{x\rightarrow2}\left(x^3+1\right)=2^3+1=9\)
\(\lim\limits_{x\rightarrow1}\frac{x+1}{x-2}=\frac{1+1}{1-2}=-2\)
\(\lim\limits_{x\rightarrow-1}\frac{x^3+2x^2+1}{2x^5+1}=\frac{\left(-1\right)^3+2+1}{2.\left(-1\right)^5+1}=\frac{2}{-1}=-1\)
\(\left(3^n+\frac{1}{3^n}\right)^2=3^{2n}+\frac{1}{3^{2n}}+2\)
\(\Rightarrow S=2n+\left(3^2+3^4+...+3^{2n}\right)+\left(\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{2n}}\right)\)
\(=2n+\left(9+9^2+...+9^n\right)+\left(\frac{1}{9}+\frac{1}{9^2}+...+\frac{1}{9^n}\right)\)
Ngoặc đầu tiên là tổng CSN có \(u_1=9;q=9\), ngoặc thứ 2 là tổng CSN có \(u_1=\frac{1}{9};q=\frac{1}{9}\)
\(\Rightarrow S=2n+\frac{9\left(9^n-1\right)}{8}+\frac{1}{9}.\frac{1-\frac{1}{9^n}}{1-\frac{1}{9}}=2n+\frac{1}{8}.9^{n+1}-\frac{1}{8.9^n}\)
1/ \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}.\sqrt[4]{1+8x}-\sqrt[3]{1+6x}.\sqrt[4]{1+8x}}{x}+\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{1+6x}.\sqrt[4]{1+8x}-\sqrt[3]{1+6x}}{x}+\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{1+6x}-1}{x}\)
Liên hợp dài quá ko muốn gõ tiếp, bạn tự đặt nhân tử chung rồi liên hợp nhé, kết quả ra 5
2/ \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{1+7x}-2-\left(x^3-3x+2\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{7\left(x-1\right)}{\sqrt[3]{\left(1+7x\right)^2}+2\sqrt[3]{1+7x}+4}-\left(x-1\right)^2\left(x+2\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{7}{\sqrt[3]{\left(1+7x\right)^2}+2\sqrt[3]{1+7x}+4}-\left(x-1\right)\left(x+2\right)=\dfrac{7}{12}\)
3/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{x^3-x^2+1}{2x^2+3x-1}=\lim\limits_{x\rightarrow-\infty}\dfrac{x-1+\dfrac{1}{x^2}}{2+\dfrac{3}{x}-\dfrac{1}{x^2}}=-\infty\)
4/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x}+\sqrt[3]{x}+\sqrt[4]{x}}{\sqrt{4x+1}}=\lim\limits_{x\rightarrow+\infty}\dfrac{1+\dfrac{1}{\sqrt[6]{x}}+\dfrac{1}{\sqrt[4]{x}}}{\sqrt{4+\dfrac{1}{x}}}=\dfrac{1}{\sqrt{4}}=\dfrac{1}{2}\)
5/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{x^2+2}}{\sqrt[3]{8x^3+x^2+1}}=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\sqrt{1+\dfrac{2}{x^2}}}{\sqrt[3]{8+\dfrac{1}{x}+\dfrac{1}{x^3}}}=\dfrac{1-1}{\sqrt[3]{8}}=0\)
6/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+3x-7}}{\sqrt[3]{27x^3+5x^2+x-4}}=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{4+\dfrac{3}{x}-\dfrac{7}{x^2}}}{\sqrt[3]{27+\dfrac{5}{x}+\dfrac{1}{x^2}-\dfrac{4}{x^3}}}=\dfrac{-\sqrt{4}}{\sqrt[3]{27}}=\dfrac{-2}{3}\)
bằng cục phân nha !!!!!!! :))))