Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có n^3+n^2+n+1>n^3 (n^2+n+1>0)
mặt khác n^3+n^2+n+1=<(n+1)^3 tương đương 2n^2+2n >=0
suy ra n^2+n>=0 tuong duong n(n+1)>=0 hien nhien dung
vậy n^3<y<=(n+1)^3 để ý là số chính phương thì y=(n+1)^3 tức là n(n+1)=0
suy ra n=0;1
(IMO 2016 mà đưa vô đây chi?)
Dễ thấy nếu xoá ít hơn 2016 nhân tử thì không được, vì khi đó ở hai vế sẽ có nhân tử chung.
Ta sẽ CM có thể xoá đúng 2016 nhân tử, bằng cách:
\(\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)...=\left(x-2\right)\left(x-3\right)\left(x-6\right)\left(x-7\right)...\)
Tự CM pt này vô nghiệm nha bạn.
\(\sqrt{9.\left(x-1\right)^2}-12=0\)
=> 3.(x - 1) - 12 = 0
=> 3x - 15 = 0
=> 3x = 15
=> x = 5
b) \(\sqrt{4.\left(3-x\right)}=16\) (ĐKXĐ: x ≤ 3)
\(\Rightarrow\sqrt{3-x}=8\)
=> 3 - x = 64
=> x = -61
= 3/2 . 4/3...11/10
=1/12
11/2