K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 3 2019

\(I=\int\limits^{100}_0x\left(x-1\right)...\left(x-100\right)dx\)

Đặt \(100-x=t\Rightarrow dx=-dt;\left\{{}\begin{matrix}x=0\Rightarrow t=100\\x=100\Rightarrow t=0\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^0_{100}\left(100-t\right)\left(99-t\right)...\left(1-t\right)\left(-t\right).\left(-dt\right)\)

\(I=\int\limits^0_{100}\left(-1\right)\left(t-100\right).\left(-1\right)\left(t-99\right)...\left(-1\right)\left(t-1\right)\left(-1\right)t\left(-dt\right)\) (101 số -1)

\(I=-\int\limits^0_{100}t\left(t-1\right)\left(t-2\right)...\left(t-100\right)\left(-dt\right)\)

\(I=-\int\limits^{100}_0t\left(t-1\right)\left(t-2\right)...\left(t-100\right)dt\)

\(I=-\int\limits^{100}_0x\left(x-1\right)\left(x-2\right)...\left(x-100\right)dx=-I\)

\(\Rightarrow2I=0\Rightarrow I=0\)

22 tháng 8 2019

\(VT=\left|x-\left(-y+\frac{1}{100}\right)\right|\ge\left|x\right|-\left|-y+\frac{1}{100}\right|\)

\(\ge\left|x\right|-\left(\left|-y\right|+\left|\frac{1}{100}\right|\right)=\left|-x\right|-\left|y\right|-\left|\frac{1}{100}\right|=VP\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x\right|\ge\left|-y+\frac{1}{100}\right|\\x\left(-y+\frac{1}{100}\right)\ge0\\-y.\frac{1}{100}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y\ge\frac{1}{100}\\x\ge\frac{1}{100}\\y\le0\end{cases}}\)

Vậy pt có nghiệm \(x\ge\frac{1}{100};y\le0\) thoả mãn \(x+y\ge\frac{1}{100}\)

27 tháng 5 2022

95/132

DD
28 tháng 5 2022

Không gian mẫu \(\Omega\) chọn 3 thẻ từ 100 thẻ. \(n\left(\Omega\right)=C_{100}^3\).

Gọi \(x,y,z\) là ba số lấy ra được thỏa mãn. 

Biến cố A là biến cố chọn được các số \(x,y,z\) đó. 

Đặt \(A_k=\left\{\left(x,y,z\right)|x,y,z\in\left\{1,2,...,100\right\},1\le x< y< z=k,x+y>z\right\}\).

Khi đó \(n\left(A\right)=\left|A_1\right|+\left|A_2\right|+...+\left|A_{100}\right|\). Dễ thấy \(\left|A_1\right|=\left|A_2\right|=\left|A_3\right|=0\).

Ta sẽ tính các giá trị của \(\left|A_k\right|\).

TH1: \(k=2m\).

Xét \(1\le x\le m\). suy ra \(k=2m\ge2x\Leftrightarrow k-x\ge x\)

\(x+y>z\Rightarrow y>k-x\Rightarrow k-x+1\le y\le z-1\)

Số cách chọn \(y\) là \(\left(k-1\right)-\left(k-x+1\right)+1=x-1\) cách. 

Xét \(x>m\)\(x+y>2x>2m=z\) (thỏa mãn bđt tam giác) 

suy ra \(x+1\le y\le z-1=2m-1\).

Số cách chọn \(y\) là: \(\left(2m-1\right)-\left(x+1\right)+1=2m-x+1\) cách. 

Tổng số cách là:

 \(\sum\left|A_k\right|=\sum_{i=1}^m\left(i+1\right)+\sum_{i=m+1}^{2m-1}\left(2m-i+1\right)=\left(m-1\right)^2\) cách. 

TH2: \(k=2m+1\).

Ta làm tương tự như trên, xét với \(1\le x\le m\) và \(x>m\).

Tổng số cách là: \(\sum\left|A_k\right|=\sum_{i=1}^m\left(i-1\right)+\sum_{i=m+1}^{2m}\left(2m-i\right)=m^2-m\) cách. 

Vậy \(n\left(A\right)=\sum_{m=2}^{49}m\left(m-1\right)+\sum_{m=2}^{50}\left(m-1\right)^2=79625\) (cách).

\(P\left(A\right)=\dfrac{n\left(\Omega\right)}{n\left(A\right)}=\dfrac{65}{132}\).

25 tháng 6 2017

\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

= \(\dfrac{\sqrt{1}-\sqrt{2}}{-1}+\dfrac{\sqrt{2}-\sqrt{3}}{-1}+...+\dfrac{\sqrt{99}-\sqrt{100}}{-1}\)

= \(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)

= \(-\sqrt{1}+\sqrt{100}\) = \(-1+10\) = \(9\)

7 tháng 7 2017

Dòng thứ 2 sao lại làm như vậy hả bạn

9 tháng 8 2020

6578,5

9 tháng 8 2020

1/6 của 39471 là :

39471 * 1/6 = 6578,5

đáp số 

đúng không ???

1 tháng 4 2017

Phương trình: \(z^2+4z+5=0\)

có 2 nghiệm: \(\left\{{}\begin{matrix}z_1=-2+i\\z_2=-2-i\end{matrix}\right.\)

+) \(\left(1+z_1\right)^{100}=\left(\left(-1+i\right)^2\right)^{50}\\ =\left(-2i\right)^{50}=\left(\left(-2i\right)^2\right)^{25}=\left(-4\right)^{25}=-2^{50}\)

+) \(\left(1+z_2\right)^{100}=\left(\left(-1-i\right)^2\right)^{50}\\ =\left(2i\right)^{50}=\left(\left(2i\right)^2\right)^{25}=\left(-4\right)^{25}=-2^{50}\)

Vậy: \(w=-2^{50}-2^{50}=-2^{51}\)

1 tháng 4 2017

Hình như đáp án bạn viết sai :)))))))))

1 tháng 11 2017

23 tháng 1 2020

S = 12 + 22 + 32 + ... + 992 + 1002

= 1.1 + 2.2 + 3.3 + ... + 99.99 + 100.100

= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + ... + 99(100 - 1) + 100.(101 - 1)

= (1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101) - (1 + 2 + 3 + ... + 99 + 100)

Đặt A = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101

3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3 + 100.101.3

     = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 99.100.(101 - 98) + 100.101.(102 - 99)

     = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100 + 100.101.102 - 99.101.102

     = 100.101.102 

=> A = 100.101.102 : 3 = 343400 

Khi đó S = 343400 - (1 + 2 + 3 + 4 + ... + 100)

               = 343400 - 100.(100 + 1) : 2

               = 343400 - 5050 = 338 350

 Vậy S = 338350

bạn ơi sao bạn còn đi trả lời câu hỏi này cho người khác mà bạn còn đi hỏi hài nay làm gì vậy