Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề:
\(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{50}\)
tính nhanh (2/3+3/4+5/6+...+99/100).(1/2+2/3+3/4+...+98/99)-(1/2+1/3+...+99/100).(2/3+2/4+...+98/99)
A = 1*2+2*3+3*4+4*5+...+99*100
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 98.99.100 - 99.100.101
=> 3A = 99.100.101
=> A = 99.100.101 / 3 = 333300
S = 1 x 2 + 2 x 3 + ... + 99 x 100
3S = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ..... + 99 x 100 x (101 - 98)
3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + .... + 99 x 100 x 101 - 98 x 99 x 100
3S = 99 x 100 x 101 = 999900
S = 999900 : 3 = 333300
a )
75/100 + 18/21 + 19/32 + 1/4 + 3/21 + 13/32
= 3/4 + 18/21 + 19/321 + 1/4 + 3/21 + 13/32
= ( 3/4 + 1/4 ) + ( 18/21 + 3/21 ) + ( 19/32 + 13/32 )
= 1 + 1 + 1
= 3
b )
4 và 2/5 + 5 và 6/9 + 2 và 3/4 + 1/4 + 1/3 + 3/5
= 22/5 + 51/9 + 11/4 + 1/4 + 1/3 + 3/5
= ( 22/5 + 3/5 ) + ( 51/9 + 1/3 ) + ( 11/4 + 1/4 )
= 25/5 + 54/9 + 12/4
= 5 + 6 + 3
= 14
a)\(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}=\frac{3}{4}+\frac{18}{21}+\frac{1}{4}+\frac{19}{32}+\frac{3}{21}+\frac{13}{32}\)
\(=\left(\frac{3}{4}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{13}{32}\right)\)
\(=1+1+1=3\)
\(A=5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+...+100}\)
A = \(5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+..+100}\)
\(=5x\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)
\(=5x\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{5050}\right)\)
\(=2x5x\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)
\(=10x\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{100x101}\right)\)
\(=10x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=10x\left(1-\frac{1}{101}\right)\)
\(=10x\frac{100}{101}\)
\(=\frac{1000}{101}\)
\(a)5\frac{3}{5}+1\frac{3}{4}+4\frac{1}{4}+3\frac{2}{5}\)
\(=\)\((5\frac{3}{5}+3\frac{2}{5})+(1\frac{3}{4}+4\frac{1}{4})\)
\(=[8+(\frac{3}{5}+\frac{2}{5})]+[5+(\frac{3}{4}+\frac{1}{4})]\)
\(=(8+1)+(5+1)\)
\(=9+6=15\)
\(b)\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)
\(=\frac{3}{4}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)
\(=(\frac{3}{4}+\frac{1}{4})+(\frac{18}{21}+\frac{3}{21})+(\frac{19}{32}+\frac{13}{32})\)
\(=1+1+1=3\)
_Học tốt_
\(2.\frac{100.101}{2}\) = 10100
\(2.\frac{100.101}{2}=10100\)