Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ok em, để olm.vn giúp em nhá:
A = \(\dfrac{1}{2}\):3 + \(\dfrac{1}{3}\):4 + \(\dfrac{1}{4}\):5+...+\(\dfrac{1}{2018}\):2019 + \(\dfrac{1}{2019}\): 2020
A=\(\dfrac{1}{2}\times\dfrac{1}{3}+\dfrac{1}{3}\times\dfrac{1}{4}+\dfrac{1}{4}\times\dfrac{1}{5}+..+\dfrac{1}{2018}\times\dfrac{1}{2019}+\dfrac{1}{2019}\times\dfrac{1}{2020}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+....+ \(\dfrac{1}{2018}\) - \(\dfrac{1}{2019}\)+ \(\dfrac{1}{2019}\) - \(\dfrac{1}{2020}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{2020}\)
A = \(\dfrac{1009}{2020}\)
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+4+...+2018}\right)\)
\(A=\frac{2}{1+2}\cdot\frac{2+3}{1+2+3}\cdot\frac{2+3+4}{1+2+3+4}\cdot...\cdot\frac{2+3+4+5+...+2018}{1+2+3+4+5+...+2018}\)
Đến chỗ này đố ai tính được ?!!?!
gạch các số của tử số và các số của mẫu số giống nhau
ví dụ như bạn nói:
\(\dfrac{2+3+4+5+...+2018}{1+2+3+4+5+...+2018} =1\)
A=(2/2-1/2) . (3/3-1/3) . ( 4/4 - 1/4 ) . (5/5 - 1/5) .... (2018/2018-1/2018). (2019/2019 - 1/2019)
A= 1/2 . 2/3 . 3/4 . 5/5 ..... 2017/2018 . 2018/2019
A= 1/2019
A = 1-1/2 . 1- 1/3 . 1-1/4 . 1-1/5 . ... . 1-1/2018 . 1-1/2019
= 0 . 0 . 0 . 0 . ... . 0 . 0.
= 0
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2016}{2017}.\frac{2017}{2018}\)
\(\Rightarrow B=\frac{1.2.3....2016.2017}{2.3.4...2017.2018}\)
\(\Rightarrow B=\frac{1}{2018}\)
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{2018}\right)\times\left(1-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{2017}{2018}\times\frac{2018}{2019}\)
\(=\frac{1\times2\times3\times...\times2017\times2018}{2\times3\times4\times...\times2018\times2019}\)
\(=\frac{1}{2019}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2017\cdot2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}=\frac{2017}{2018}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
=3/2.4/3.5/4.......2019/2018
=3.4.5......2019/2.3.4.5....2018
=2019/2
học tốt
\(\left(1+\frac{1}{2}\right)x\left(1+\frac{1}{3}\right)x\left(1+\frac{1}{4}\right)x...x\left(1+\frac{1}{2018}\right)\)
\(=\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x...x\frac{2019}{2018}\)
\(=\frac{2019}{2}\)