K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

\(\frac{1}{1}+2+\frac{1}{1}+2+3+\frac{1}{1} +2+3+4+...+\frac{1}{1}+2+3......2019\)

Ta có : \(\frac{2}{2}+\left(\frac{1}{2}\right)+\frac{2}{2}+\left(1+2+3\right)+....+\frac{2}{2}+\left(1+2+....+50\right)\)

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.....+\frac{2}{2550}\)

\(=\frac{2}{2}.3+\frac{2}{3}.4+....+\frac{2}{50}.51\)

\(=2.\left(\frac{1}{2}.3+\frac{1}{3}.4+.....+\frac{1}{50}.51\right)\)

\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{50}-\frac{1}{51}\right)\)

\(=2.\left(1-\frac{1}{51}\right)\)

\(=2.\frac{50}{51}\)

\(=\frac{100}{51}\)

Hmmm , kh bt có đúng kh nhỉ ???

Nếu kh đúng chỗ nào mong m.n chỉ ạ

:>>

6 tháng 4 2020

cảm ơn mình đã k cho bạn rồi nhé cảm ơn

2 tháng 6 2018

a) \(A=98+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào mỗi phân số)

\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{99}+1\right)\)

\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)

Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}=1\)

b) \(A=2018+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\)(có 2018 phân số nên ta cộng 1 vào mỗi phân số)

\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{2019}+1\right)\)

\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)

Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}=1\)

c) \(A=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)

\(A=99+\frac{98}{2}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào từng phân số)

\(A=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)

\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\)

\(A=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Và \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)

\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}=100\)

2 tháng 6 2018

a)\(B=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{100}{99}\)

\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{99}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\right)\)

\(\Rightarrow B=98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}=1.\)

Vậy \(A:B=1.\)

b)\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{2019}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right)\)

\(\Rightarrow B=2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}=1.\)

Vậy \(A:B=1.\)

c)\(A=\left(1+1+...+1\right)+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)

\(A=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{2}{98}\right)+\left(1+\frac{1}{99}\right)\)

\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)

\(A=100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}}=1.\)

Vậy \(A:B=1.\)

26 tháng 6 2021

= 100/51

26 tháng 6 2021

Từ từ mình trình bày cho nha

4 tháng 7 2017

1-2+3-4+5-6+......+101-102+103

\(\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(101-102\right)+103\)

\(\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)+103\)( có 51 cặp số (1) )

\(\left(-51\right)+103\)

\(52\)

Vậy ...

4 tháng 7 2017

1-2+3-4+5-6+......+101-102+103

=(103 - 102)+(101 - 100)+...+(7 - 6)+(5 - 4)+(3 - 2)+1

Ta thấy dãy trên có 51 cặp , mỗi cặp đều có tổng bằng 1.

= 1 * 51 +1

=1 * 52

=52.

\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{2018+2019}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(=1-\frac{1}{2019}\)

\(=\frac{2018}{2019}\)

10 tháng 6 2019

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\) ( đúng ko bn ?? ) 

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(\frac{1}{1}-\frac{1}{2019}=\frac{2018}{2019}\)

Học tốt

12 tháng 8 2019

B = \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}...+\frac{1}{1+2+3+...+2019}\)

    = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{2019\times1010}\)

    = \(2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2019\times2020}\right)\)

   = \(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{2019\times2020}\right)\)

  = \(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)

  = \(2\times\left(\frac{1}{2}-\frac{1}{2020}\right)\)

\(=2\times\frac{1009}{2020}\)

\(=\frac{1009}{1010}< \frac{1010}{1010}=1\)

\(\Rightarrow B< 1\)

10 tháng 9 2020

Nhanh giúp mk nhé!

Cần gấp lắm!

số lượng số hạng của dãy số là 

    (  2021 - 2  ) : 1 + 1 = 2020 

tổng của dãy số là 

  ( 2021 + 2) x 2020 : 2 = 2043230

                                     vậy A = \(\frac{1}{2043230}\)

5 tháng 7 2020

MN giúp mk với