K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

a) Gọi dãy đó là A, ta có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\) 

\(2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\) 

\(2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\right)\) 

\(A=\dfrac{1}{2}-\dfrac{1}{2^{2014}}\) 

Vì \(\dfrac{1}{2}< 1;\dfrac{1}{2^{2014}}< 1\) nên \(\dfrac{1}{2}-\dfrac{1}{2^{2014}}< 1\) 

\(\Rightarrow A< 1\) 

b) \(A=\dfrac{10^{11}-1}{10^{12}-1}\) và \(B=\dfrac{10^{10}+1}{10^{11}+1}\) 

Ta có:

\(A=\dfrac{10^{11}-1}{10^{12}-1}\) 

\(10A=\dfrac{10^{12}-10}{10^{12}-1}\) 

\(10A=\dfrac{10^{12}-1+9}{10^{12}-1}\) 

\(10A=1+\dfrac{9}{10^{12}-1}\) 

Tương tự:

\(B=\dfrac{10^{10}+1}{10^{11}+1}\) 

\(10B=\dfrac{10^{11}+10}{10^{11}+1}\) 

\(10B=\dfrac{10^{11}+1+9}{10^{11}+1}\) 

\(10B=1+\dfrac{9}{10^{11}+1}\) 

Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\) nên \(10A< 10B\) 

\(\Rightarrow A< B\)

13 tháng 5 2021

a) Ta có

A = n / n+1 = 1-(1/n+1)

A = n+2 / n+3 = 1-(1/n+3)

Vì 1/n+1 > 1/n+3

=> n/n+1 < n+2/n+3 

=> A<B

13 tháng 5 2018

So sánh: mk làm luôn nè:

Ta có: \(\frac{10}{11}>\frac{10}{11+12};\frac{11}{12}>\frac{11}{11+12}\)

\(\Rightarrow\frac{10}{11}+\frac{11}{12}>\frac{10}{11+12}+\frac{11}{11+12}\)

\(\Rightarrow\frac{10}{11}+\frac{11}{12}>\frac{10+11}{11+12}\)

MK KO BIẾT ĐÚNG KO NỮA NÊN BN CÓ THỂ THAM KHẢO CỦA CÁC BẠN KHÁC NHÉ.!!

CHÚC BẠN HỌC TỐT. ^_^

4 tháng 10 2021

 1/2+1/2^2+1/3^2+1/4^2+.......+1/100^2<1

= 1/2 + 1/4 + 1/9 + ... + 1/10000

có : 100 - 1 + 1 = 100 số hạng 

1 = 1/100 + 1/100 + ... + 1/100

suy ra  1/2+1/2^2+1/3^2+1/4^2+.......+1/100^2<1

12 tháng 10 2019

Mình làm câu a) nha!!!

+) \(A=2009^{2010}+2009^{2009}\)

        \(=2009^{2009}.\left(2009+1\right)\)

        \(=2009^{2009}.2010\)

+) \(B=2010^{2010}=2010^{2009}.2010\)

Vì \(2010^{2009}>2009^{2009}\)nên \(2010^{2009}.2010>2009^{2009}.2010\)hay \(B>A\)

Vậy \(A< B\)

Hok tốt nha^^

AH
Akai Haruma
Giáo viên
7 tháng 12 2023

Lời giải:
a.

\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)

\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)

b.

\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)

\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)

$\Rightarrow 10A< 10B\Rightarrow A< B$

11 tháng 7 2017

Ta có :\(a=\dfrac{10^{11}-1}{10^{12}-1}\Rightarrow10a=\dfrac{10^{12}-10}{10^{12}-1}=\dfrac{10^{12}-1-9}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\)

\(b=\dfrac{10^{10}+1}{10^{11}+1}\Rightarrow10b=\dfrac{10^{11}+10}{10^{11}+1}=\dfrac{10^{11}+1+9}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)

Ta có : \(1-\dfrac{9}{10^{12}-1}\le1+\dfrac{9}{10^{11}+1}\) hay \(10a< 10b\Rightarrow a< b\)

11 tháng 7 2017

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(A=\dfrac{10^{11}-1}{10^{12}-1}< 1\)

\(A< \dfrac{10^{11}-1+11}{10^{12}-1+11}\Rightarrow A< \dfrac{10^{11}+10}{10^{12}+10}\Rightarrow A< \dfrac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}\Rightarrow A< \dfrac{10^{10}+1}{10^{11}+1}=B\)

\(\Rightarrow A< B\)

10 tháng 3 2022

\(2\dfrac{1}{3}.3=\dfrac{7}{3}.3=7.\\ \left(\dfrac{2}{5}-\dfrac{3}{4}\right)-\dfrac{2}{5}=\dfrac{2}{5}-\dfrac{3}{4}-\dfrac{2}{5}=-\dfrac{3}{4}.\\ \dfrac{-10}{11}.\dfrac{4}{7}+\dfrac{-10}{11}.\dfrac{3}{7}+1\dfrac{10}{11}.\\ =\dfrac{-10}{11}\left(\dfrac{4}{7}+\dfrac{3}{7}-1\right).\\ =\dfrac{-10}{11}.\left(1-1\right)=0.\)

10 tháng 3 2022

1) 2\(\dfrac{1}{3}\).3=\(\dfrac{7}{3}\).3=7.

2) (2/5 -3/4) -2/5 = 2/5 -3/4 -2/5 = -3/4.

3) \(\dfrac{-10}{11}.\dfrac{4}{7}+\dfrac{-10}{11}.\dfrac{3}{7}+1\dfrac{10}{11}=\dfrac{1}{11}\left(-\dfrac{40}{7}-\dfrac{30}{7}+21\right)=\dfrac{1}{11}.\left(-10+21\right)=1\).

25 tháng 4 2018

mình nghĩ là b

Câu 1: 

\(\dfrac{2}{5}-\dfrac{1}{4}+\dfrac{3}{10}=\dfrac{8}{20}-\dfrac{5}{20}+\dfrac{6}{20}=\dfrac{8-5+6}{20}=\dfrac{9}{20}\) 

Câu 2:

\(\dfrac{-2}{5}:\left(1-\dfrac{1}{10}\right)=\dfrac{-2}{5}:\dfrac{9}{10}=\dfrac{-2}{5}.\dfrac{10}{9}=\dfrac{-2.10}{5.9}=\dfrac{-20}{45}=\dfrac{-4}{9}\) 

Câu 3:

\(\dfrac{7}{8}.\dfrac{4}{9}+\dfrac{1}{14}:\dfrac{5}{14}=\dfrac{7}{18}+\dfrac{1}{5}=\dfrac{53}{90}\) 

Câu 4:

\(\dfrac{2}{7}.\dfrac{3}{11}+\dfrac{2}{7}.\dfrac{8}{11}\) 

\(=\dfrac{2}{7}.\left(\dfrac{3}{11}+\dfrac{8}{11}\right)\) 

\(=\dfrac{2}{7}.1\) 

\(=\dfrac{2}{7}\)

21 tháng 5 2021

Câu 1

\(\dfrac{2}{5}\)-\(\dfrac{1}{4}\)+\(\dfrac{3}{10}\)\(\dfrac{8}{20}\)-\(\dfrac{5}{20}\)+\(\dfrac{6}{20}\)=\(\dfrac{3}{20}\)+\(\dfrac{6}{20}\)=\(\dfrac{9}{20}\)

Câu 2

-\(\dfrac{2}{5}\):(1-\(\dfrac{1}{10}\))= -\(\dfrac{2}{5}\):\(\dfrac{9}{10}\)=-\(\dfrac{2}{5}\).\(\dfrac{10}{9}\)=-\(\dfrac{4}{9}\)

Câu 3

\(\dfrac{7}{8}.\dfrac{4}{9}+\dfrac{1}{14}:\dfrac{5}{14}\)\(\dfrac{7}{8}.\dfrac{4}{9}+\dfrac{1}{14}.\dfrac{14}{5}\)=\(\dfrac{7.4}{4.2.9}+\dfrac{1.14}{14.5}\)=\(\dfrac{7}{18}+\dfrac{1}{5}\)=\(\dfrac{35}{90}+\dfrac{18}{90}\)=\(\dfrac{53}{90}\)

Câu 4

\(\dfrac{2}{7}.\dfrac{3}{11}+\dfrac{2}{7}.\dfrac{8}{11}\)=\(\dfrac{2}{7}.\left(\dfrac{3}{11}+\dfrac{8}{11}\right)\)=\(\dfrac{2}{7}.1\)=\(\dfrac{2}{7}\)