K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2023

Bạn xem lại đề

20 tháng 7 2023

dung de bn ah

20 tháng 7 2023

\(...=1-\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{4}-...-\dfrac{1}{98}+\dfrac{1}{99}\)

\(=\dfrac{1}{99}\) (Bạn xem lại đề)

20 tháng 7 2023

đề này nó cứ lạ lạ kiểu gì ấy

19 tháng 9 2018

\(\Rightarrow C=\frac{1}{100}-\left(\frac{1}{100\cdot99}+\frac{1}{99\cdot98}+\frac{1}{98\cdot97}+...+\frac{1}{3\cdot2}+\frac{1}{2\cdot1}\right)\)

\(\Rightarrow C=\frac{1}{100}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\right)\)

\(\Rightarrow C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

\(\Rightarrow C=\frac{1}{100}-1+\frac{1}{100}\)

\(\Rightarrow C=\left(\frac{1}{100}+\frac{1}{100}\right)-1\)

\(\Rightarrow C=\frac{1}{50}-1\)

\(\Rightarrow C=\frac{-49}{50}\)

17 tháng 3 2019

\(\frac{T}{M}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{1}{99}+\frac{2}{98}+...+\frac{98}{2}+\frac{99}{1}}\)

Xét M - 99 + 98 = \(\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}\)

\(\Leftrightarrow M-1=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)\)

\(\Rightarrow M=\frac{100}{100}+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(\Rightarrow\frac{T}{M}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)

26 tháng 3 2017

(101+100+99+98+...+3+2+1)/(101-100+99-98+...+3-2+1)

=101+100+99+98+...+3+2+1

=101 . (101 + 2) : 2

=5151

101-100+99-98+...+3-2+1

=(101-100)+(99-98)+...+(3-2)+1

=1 + 1 + 1 + ... + 1

=101- 2 + 1
=100 : 2

=50 + 1

=51

(101 + 100 + 99 + 98 + ... + 3+2+1) / (101-100+99-98+...+3-2+1) = 5151/51 = 101

13 tháng 10 2018

bang 101

24 tháng 12 2018

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

24 tháng 12 2018

Cảm ơn bạn nhiều nha!

A=-1++(-1)+..+-(1) có 50 số -1

=>A=-1x50=-50

B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

B=0+0+0+..+0

B=0

C=2^100-(2^99+2^98+...+1)

C=2^100-(2^100-1)

C=1

8 tháng 9 2018

\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)

\(=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=\frac{98}{100}=\frac{49}{50}\)