Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CHO TOG TRÊN LÀ A
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{110.111}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{110}-\frac{1}{111}\)
\(=1-\frac{1}{111}\)
\(=\frac{110}{111}\)
Áp dụng \(\frac{1}{a.\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
Ta có \(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{100.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
1/1.2+1/2.3+1/3.4+.....+1/100/101
=1-1/2+1/2-1/3+1/3-1/4+.....+1/100-1/101
=1-1/101
=100/101
S= 1/1 - 1/2 + 1/2 - 1/3 +...+ 1/n - 1/(n+1)
=> S= 1/1 - 1/(n+1)
=> S= n/(n+1)
A= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\)
A= 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2018}-\frac{1}{2019}\)
A= 1 - \(\frac{1}{2019}\)
A= \(\frac{2018}{2019}\)
\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{19\cdot20}\right)\div x=\frac{9}{10}\)
\(\Leftrightarrow\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\div x=\frac{9}{10}\)
\(\Leftrightarrow\left(\frac{1}{1}-\frac{1}{20}\right)\div x=\frac{9}{10}\)
\(\Leftrightarrow\frac{19}{20}\div x=\frac{9}{10}\)
\(\Leftrightarrow x=\frac{19}{18}\)
Sửa đề : \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\right):x=\frac{9}{10}\)
\(\Leftrightarrow VT=\frac{9}{10}x\)
\(\Leftrightarrow\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)=\frac{9}{10}x\)
\(\Leftrightarrow\left(1-\frac{1}{20}\right)=\frac{9}{10}x\Leftrightarrow\frac{19}{20}=\frac{9}{10}x\)
\(\Leftrightarrow\frac{19}{20}=\frac{18x}{20}\) Khử mẫu ta đc : \(\Leftrightarrow18x=19\Leftrightarrow x=\frac{19}{18}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
= \(1-\frac{1}{50}
Ta có : 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50
= 1 - 1/50 < 1
Nên 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50 < 1
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{149.150}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{149}-\dfrac{1}{150}\)
\(A=\dfrac{1}{1}-\dfrac{1}{150}\)
\(A=\dfrac{150}{150}-\dfrac{1}{150}\)
\(A=\dfrac{149}{150}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2003\times2004}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2004}=1-\frac{1}{2004}=\frac{2003}{2004}\)
1/1.2+1/2.3+1/4.4+...1/2003.2004
=1-1/2004
=2003/2004