K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Lời giải:
Xét thừa số tổng quát $1+\frac{1}{n(n+2)}=\frac{n(n+2)+1}{n(n+2)}=\frac{(n+1)^2}{n(n+2)}$

Khi đó:

$1+\frac{1}{1.3}=\frac{2^2}{1.3}$

$1+\frac{1}{2.4}=\frac{3^2}{2.4}$

.........

$1+\frac{1}{99.101}=\frac{100^2}{99.101}$

Khi đó:

$A=\frac{2^2.3^2.4^2......100^2}{(1.3).(2.4).(3.5)....(99.101)}$

$=\frac{(2.3.4...100)(2.3.4...100)}{(1.2.3...99)(3.4.5...101)}$

$=\frac{2.3.4...100}{1.2.3..99}.\frac{2.3.4...100}{3.4.5..101}$
$=100.\frac{2}{101}=\frac{200}{101}$

15 tháng 8 2023

giúp em với

 

26 tháng 11 2021

x = { -19 , -18 , -17 , -16 , - 15 , ...... , 20 }

Tổng = 20

26 tháng 11 2021

\(\text{ 1) - 20 ≤ x ≤ 21}\)

\(x=\left\{-19;-18;-17;....;19;20\right\}\)

Tổng các số nguyên x là :

\(=\left(-19\right)+\left(-18\right)+\left(-17\right)+...+19+20\)

\(\text{= 20 + [(-19) + 19] + [(-18) + 18] + ... + [(-1) + 1] + 0}\)

\(=20+0+0+.......+0+0\)

\(=20\)

17 tháng 4 2020

\(x\times100567=1467171963\)

                       \(x=1467171963\div100567\)

                       \(x=14589\)

Vậy x=14589

17 tháng 4 2020

Easy!

11 tháng 3 2017

\(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{49.51}\right)\)+\(\dfrac{2}{51}\)

=\(\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}.....\dfrac{2500}{49.51}\)+\(\dfrac{2}{51}\)

=\(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{50^2}{49.51}\)+\(\dfrac{2}{51}\)

=\(\dfrac{\left(2.3.4.....50\right)\left(2.3.4.....50\right)}{\left(1.2.3.....49\right)\left(3.4.....51\right)}\)+\(\dfrac{2}{51}\)

=\(\dfrac{\left(2.3.4.....49\right).50.2.\left(3.4.5.....50\right)}{1.\left(2.3.4.....49\right)\left(3.4.5.....50\right).51}\)+\(\dfrac{2}{51}\)

=\(\dfrac{50.2}{1.51}\)+\(\dfrac{2}{51}\)=\(\dfrac{100}{51}\)+\(\dfrac{2}{51}\)=\(\dfrac{102}{51}\)=2