Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(85\times16+16\times15\)
\(=16\times\left(85+15\right)\)
\(=16\times100=1600\)
b) \(\left(\dfrac{3}{7}\times\dfrac{11}{15}+\dfrac{3}{7}\times\dfrac{4}{15}\right):\left(4+2\dfrac{6}{11}-\dfrac{6}{11}\right)\)
\(=\left[\dfrac{3}{7}\times\left(\dfrac{11}{15}+\dfrac{4}{15}\right)\right]:\left(4+\dfrac{28}{11}-\dfrac{6}{11}\right)\)
\(=\dfrac{3}{7}\times1:\left(4+2\right)\)
\(=\dfrac{3}{7}:6\)
\(=\dfrac{3}{7}\times\dfrac{1}{6}=\dfrac{3}{42}=\dfrac{1}{14}\)
c) \(x+\left(x+3\right)+\left(x+6\right)+...+\left(x+102\right)=1855\)
\(\Rightarrow35x+\left(3+6+...+102\right)=1855\)
\(\Rightarrow35x+\left(102+3\right)\times34:2=1855\)
\(\Rightarrow35x+1785=1855\)
\(\Rightarrow35x=1855-1785\)
\(\Rightarrow35x=70\)
\(\Rightarrow x=70:35\)
\(\Rightarrow x=2\)
Vậy...
\(#Tmiamm\)
\(\frac{7}{8}>\frac{7}{9}>\frac{7}{10}>\frac{7}{11}>\frac{7}{15}\)
Tính :
\(a,\frac{1}{4}+\frac{3}{8}+\frac{5}{16}=\frac{4+6+5}{16}=\frac{15}{16}\)
\(b,\frac{3}{5}-\frac{1}{3}-\frac{1}{6}=\frac{18-10-5}{30}=\frac{3}{30}=\frac{1}{10}\)
\(c,\frac{4}{7}\times\frac{5}{8}\times\frac{7}{12}=\frac{5}{14}\times\frac{7}{12}=\frac{5}{24}\)
\(d,\frac{25}{28}:\frac{15}{14}\times\frac{6}{7}=\frac{25\times14\times6}{28\times15\times7}=\frac{5}{7}\)
a)\(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{23.27}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}=\frac{1}{3}-\frac{1}{27}=\frac{8}{27}\)
b)\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
c)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}=\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{13}+2\left(1-\frac{1}{10}\right)=\frac{10}{39}+\frac{9}{5}=\frac{401}{195}\)
\(\dfrac{7}{2}+\dfrac{2}{25}=\dfrac{7\times25}{2\times25}+\dfrac{2\times2}{25\times2}=\dfrac{175}{50}+\dfrac{4}{50}=\dfrac{179}{50}\)
\(\dfrac{23}{5}-\dfrac{11}{3}=\dfrac{23\times3}{5\times3}-\dfrac{11\times5}{3\times5}=\dfrac{69}{15}-\dfrac{55}{15}=\dfrac{14}{15}\)
\(\dfrac{3}{7}-\dfrac{1}{14}=\dfrac{3\times2}{7\times2}-\dfrac{1}{14}=\dfrac{6}{14}-\dfrac{1}{14}=\dfrac{5}{14}\)
\(\dfrac{8}{5}:\dfrac{1}{3}=\dfrac{8}{5}\times3=\dfrac{8\times3}{5}=\dfrac{24}{5}\)
\(2:\dfrac{5}{3}=2\times\dfrac{3}{5}=\dfrac{2\times3}{5}=\dfrac{6}{5}\)
\(\dfrac{4}{5}\times\dfrac{7}{15}=\dfrac{4\times7}{5\times15}=\dfrac{28}{75}\)
Lời giải:
\(\frac{7}{2}+\frac{2}{25}=\frac{7\times 25+2\times 2}{2\times 25}=\frac{179}{50}\)
\(\frac{23}{5}-\frac{11}{3}=\frac{23\times 3-5\times 11}{5\times 3}=\frac{14}{15}\)
\(\frac{3}{7}-\frac{1}{14}=\frac{6}{14}-\frac{1}{14}=\frac{6-1}{14}=\frac{5}{14}\)
\(\frac{8}{5}: \frac{1}{3}=\frac{8}{5}\times 3=\frac{24}{5}\)
$2: \frac{5}{3}=\frac{2\times 3}{5}=\frac{6}{5}$
$\frac{4}{5}\times \frac{7}{15}=\frac{28}{75}$
\(a,1\dfrac{4}{7}.3\dfrac{4}{11}.3\dfrac{11}{15}.5\dfrac{5}{8}\)
\(=\dfrac{11}{7}.\dfrac{27}{11}.\dfrac{56}{15}.\dfrac{45}{8}\)
\(=\dfrac{11.27.56.45}{7.11.15.8}\)
\(=\dfrac{1.3.7.3}{1.1.1.1}\)
\(=63\)
\(b,\dfrac{3}{4}.1\dfrac{1}{2}+\dfrac{3}{4}.\dfrac{1}{2}\)
\(=\dfrac{3}{4}.\left(1\dfrac{1}{2}+\dfrac{1}{2}\right)\)
\(=\dfrac{3}{4}.2\)
\(=\dfrac{3}{2}\)
\(\dfrac{11}{15}:\dfrac{7}{5}\times\dfrac{4}{3}\)
\(=\dfrac{11}{15}\times\dfrac{5}{7}\times\dfrac{4}{3}\)
\(=\dfrac{11\times5\times4}{15\times7\times3}\)
\(=\dfrac{44\times5}{5\times3\times21}\)
\(=\dfrac{44}{3\times21}\)
\(=\dfrac{44}{63}\)