Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐỀ SAI NHA
Đặt \(A=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right).........\left(1+\frac{1}{99.101}\right)\)
\(\Rightarrow A=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.......\frac{99.101+1}{99.101}\)
\(\Rightarrow A=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}..................\frac{10000}{99.101}\)
\(\Rightarrow A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...............\frac{100^2}{99.101}\)
\(\Rightarrow A=\frac{\left(2.3.4..............100\right).\left(2.3.4................100\right)}{\left(1.2.3.................99\right).\left(3.4.5.............101\right)}\)
\(\Rightarrow A=\frac{100.2}{1.101}=\frac{200}{101}=1\frac{99}{101}\)
Vậy \(A=1\frac{99}{101}\)
Chúc bn học tốt
Ta có:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Ta có: \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right).x=\frac{3}{4}\)
\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right).x=2.\frac{3}{4}\)
\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right).x=\frac{3}{2}\)
\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right).x=\frac{3}{2}\)
\(\left(1-\frac{1}{101}\right).x=\frac{3}{2}\)
\(\frac{100}{101}.x=\frac{3}{2}\)
\(x=\frac{3}{2}:\frac{100}{101}\)
\(x=\frac{303}{200}\)
\(\frac{2}{1.2}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Đặt \(A=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(\Rightarrow A=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{5}{2}\left(1-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{5}{2}.\frac{100}{101}=\frac{5.50}{101}=\frac{550}{101}\)
Sửa đề: \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)\cdot...\cdot\left(1+\frac{1}{99\cdot101}\right)\)
Ta có: \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)\cdot...\cdot\left(1+\frac{1}{99\cdot101}\right)\)
\(=\frac{2\cdot2}{1\cdot3}\cdot\frac{3\cdot3}{2\cdot4}\cdot\frac{4\cdot4}{3\cdot5}\cdot...\cdot\frac{100\cdot100}{99\cdot101}\)
\(=\frac{2\cdot3\cdot4\cdot...\cdot100}{1\cdot2\cdot3\cdot...\cdot99}\cdot\frac{2\cdot3\cdot4\cdot...\cdot100}{3\cdot4\cdot5\cdot...\cdot101}\)
\(=100\cdot\frac{2}{101}=\frac{200}{101}\)