Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 21.52.17 = 2.25.17 = 50.17 = 850
b, 22 + 23 + 24 = 4 + 8 + 16 = 28
c, 25.3 + 24:8 + 50: 52
= 32.3 + 16:8 + 50:25
=96 + 2 + 2
= 100
d, 112 - 102 - 32
= 121 - 100 - 9
= 21 - 9
= 12
e, 13 + 23 + 33 + 43 + 53
= ( 1+ 2+3+4+5)2
= 152
= 225
Bài này dễ mà!
Đặt \(A=\frac{1}{11^1}+\frac{1}{11^2}+...+\frac{1}{11^{99}}=\frac{1}{11}+\frac{1}{11.11}+...+\frac{1}{11...11}\) ( \(\frac{1}{11...11}\)nghĩa là \(\frac{1}{11^{99}}\))
\(\Leftrightarrow A=\frac{1}{11.\left(11.11\right)...+\left(11...11\right)}=\frac{1}{11^{1+2+...+99}}\)
Ta có phép tính \(1+2+...+99\)
Số số hạng của phép tính trên là: (99 - 1) : 1 + 1 = 99 số hạng
Tổng trên là: (99 + 1) . 99 : 2 =4950
Vậy \(\frac{1}{11^{1+2+....+99}}=\frac{1}{11^{4950}}\)
\(\left(-\dfrac{1}{2}\right)^2\div\dfrac{1}{4}-2\times\left(-\dfrac{1}{2}\right)^2\\= \dfrac{1}{4}\div\dfrac{1}{4}-2\times\dfrac{1}{4}\\ =1-\dfrac{1}{2}\\ =\dfrac{1}{2}\)
\(\left(-2\right)^3\times-\dfrac{1}{24}+\left(\dfrac{4}{3}-1\dfrac{5}{6}\right)\div\dfrac{5}{12}\)
= \(-6\times-\dfrac{1}{24}+\left(\dfrac{4}{3}-\dfrac{11}{6}\right)\div\dfrac{5}{12}\)
= \(\dfrac{1}{4}+-\dfrac{1}{2}\div\dfrac{5}{12}\)
= \(\dfrac{1}{4}+-\dfrac{6}{5}\)
= \(\dfrac{1}{4}-\dfrac{6}{5}\)
= \(-\dfrac{19}{20}\)
\(\left(6\dfrac{4}{9}+\dfrac{7}{11}\right)-\left(4\dfrac{4}{9}-2\dfrac{4}{11}\right)\\ =\dfrac{58}{9}+\dfrac{7}{11}-\dfrac{40}{9}+\dfrac{26}{11}\\ =\dfrac{58}{9}-\dfrac{40}{9}+\dfrac{7}{11}+\dfrac{26}{11}\\ =12+3\\ =15\)
\(a,\left(\dfrac{-1}{2}\right)^2:\dfrac{1}{4}-2\left(-\dfrac{1}{2}\right)^2\)
\(=\left(-\dfrac{1}{2}\right)^2\left(4-2\right)\)
\(=\dfrac{1}{4}.2=\dfrac{1}{2}\)
\(b,\left(-2\right)^3.\dfrac{-1}{24}+\left(\dfrac{4}{3}-1\dfrac{5}{6}\right):\dfrac{5}{12}\)
\(=\left(-8\right).\dfrac{-1}{24}+\left(-\dfrac{1}{2}\right).\dfrac{12}{5}\)
\(=\dfrac{1}{3}+\left(-\dfrac{1}{5}\right)=\dfrac{2}{15}\)
\(c,\left(6\dfrac{4}{9}+\dfrac{7}{11}\right)-\left(4\dfrac{4}{9}-2\dfrac{4}{11}\right)\)
\(=\dfrac{701}{99}-\dfrac{206}{99}=\dfrac{495}{99}=5\)
\(d,10\dfrac{1}{5}-5\dfrac{1}{2}.\dfrac{60}{11}+\dfrac{3}{15\%}\)
\(=\dfrac{51}{5}-30+20=\dfrac{1}{5}\)
\(e,\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}\)
\(=\dfrac{5}{7}\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)=\dfrac{5}{7}.\left(-\dfrac{7}{11}\right)\)
\(=-\dfrac{5}{11}\)
\(f,\dfrac{-5}{7}.\dfrac{2}{11}+\left(-\dfrac{5}{7}\right).\dfrac{9}{11}+1\dfrac{5}{7}\)
\(=\left(-\dfrac{5}{7}\right)\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+\dfrac{12}{7}\)
\(=\left(-\dfrac{5}{7}\right)+\dfrac{12}{7}=1\)
Đặt A=1+11+11^2+...+11^2012+11^2013
11A=11.(1+11+11^2+...+11^2012+11^2013)
11A-A=(11+11^2+...+11^2013+11^2014)-(1+11+11^2+...+11^2012+11^2013)
10A=11^2014-1
A=\(\frac{11^{2014}-1}{10}\)
toán nâng cao lớp 6 phải ko bạn.
\(1+11+11^2+...+11^{2013}\)
Đặt \(A=1+11+11^2+....+11^{2013}\)
\(\Leftrightarrow11A=11+11^2+.....+11^{2014}\)
\(\Leftrightarrow11A-A=\left(11+11^2+....+11^{2014}\right)-\left(1+11+...+11^{2013}\right)\)
\(\Leftrightarrow10A=11^{2014}-1\)
\(\Leftrightarrow A=\frac{11^{2014}-1}{10}\)