Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(1+4+4^2+4^3+...+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+21\cdot4^3+...+21\cdot4^{2010}\)
\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21
2) \(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+8\cdot7^2+...8\cdot7^{100}\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8
3) CM chia hết cho 5:
\(2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)
\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)
\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5
CM chia hết cho 31:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\cdot31+...+2^{96}\cdot31\)
\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31
Bài 1:
$A=2^1+2^2+2^3+2^4$
$2A=2^2+2^3+2^4+2^5$
$\Rightarrow 2A-A=2^5-2^1$
$\Rightarrow A=2^5-1=32-1=31$
----------------------------
$B=3^1+3^2+3^3+3^4$
$3B=3^2+3^3+3^4+3^5$
$\Rightarrow 3B-B = 3^5-3$
$\Rightarrow 2B = 3^5-3\Rightarrow B = \frac{3^5-3}{2}$
--------------------------
$C=5^1+5^2+5^3+5^4$
$5C=5^2+5^3+5^4+5^5$
$\Rightarrow 5C-C=5^5-5$
$\Rightarrow C=\frac{5^5-5}{4}$
Ta co: 1x2x3x4x5x6 chia het cho 2( co chua thua so 2)
Mà 35 ko chia hết cho 2 nên:
1x2x3x4x5x6-35 ko chia het cho 2
1x2x3x4x5x6 chia hết cho 5( co chua thua so 5)
35 chia het cho 5 nen 1x2x3x4x5x6 - 35 chia het cho 5
b) Tuong tu nha ban
mik di
không chia hết