Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có công thức : \(1+2+3+....+n=\frac{\left(n+1\right)n}{2}\)
Áp dụng ta có :
\(1+\left(1+2\right)+\left(1+2+3\right)+\left(1+2+3+4\right)+....+\left(1+2+....+100\right)\)
\(=1+\frac{2\left(2+1\right)}{2}+\frac{3\left(3+1\right)}{2}+\frac{4\left(4+1\right)}{2}+....+\frac{100\left(100+1\right)}{2}\)
\(=\frac{1.2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+....+\frac{100.101}{2}\)
\(=\frac{1.2+2.3+3.4+....+100.101}{2}=\frac{\frac{100.101.102}{3}}{2}=171700\)
1) ĐKXĐ: \(x^2+2x-3\ge0\Leftrightarrow\left(x+1\right)^2\ge4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1\ge2\\x+1\le-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\)
2) ĐKXĐ: \(2x^2+5x+3\ge0\Leftrightarrow2\left(x+\dfrac{5}{4}\right)^2\ge\dfrac{1}{8}\Leftrightarrow\left(x+\dfrac{5}{4}\right)^2\ge\dfrac{1}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{5}{4}\ge\dfrac{1}{4}\\x+\dfrac{5}{4}\le-\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge-1\\x\le-\dfrac{3}{2}\end{matrix}\right.\)
3) ĐKXĐ: \(x-1>0\Leftrightarrow x>1\)
4) ĐKXĐ: \(x-3< 0\Leftrightarrow x< 3\)
5) ĐKXĐ: \(x+2< 0\Leftrightarrow x< -2\)
6) ĐKXĐ: \(2a-1>0\Leftrightarrow a>\dfrac{1}{2}\)
\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2\sqrt{2}}{\sqrt{2}+1}-\left(3+\sqrt{3}-2\sqrt{2}\right)\\ =\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{2\sqrt{2}\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-3-\sqrt{3}+2\sqrt{2}\\ =\sqrt{3}+2+\dfrac{4-2\sqrt{2}}{2-1}-3-\sqrt{3}+2\sqrt{2}\\ =-1+2\sqrt{2}+\dfrac{4-2\sqrt{2}}{1}\\ =-1+2\sqrt{2}+4-2\sqrt{2}\\ =3\)
lại cái gì đây má nội
tôi dell hiểu cái gì cả
ukm,mỗi dòng là một cái nhé