Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy ta có: \(\frac{1}{a^2+1}=\frac{\left(a^2+1\right)-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\ge1-\frac{a^2}{2a}=1-\frac{a}{2}\)
Hoàn toàn tương tự ta được
\(\frac{1}{b^2+1}\ge1-\frac{b}{2};\frac{1}{c^2+1}\ge1-\frac{c}{2};\frac{1}{d^2+1}\ge1-\frac{d}{2}\)
Cộng theo vế của từng BĐT trên ta được
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1\ge2}\)
Dấu "=" xảy ra khi a=b=c=d=1
Nguồn: Nguyễn Thị Thúy
1+1/2.(1+2)+1/3.(1+2+3)+1/4.(1+2+3+4)+...+1/2023.(1+2+3+...+2023)
=1+1/2.(1+2).2/2+1/3.(1+3).3/2+1/4.(1+4).4/2+...+1/2023.(1+2+3+...+2023).2023/2
=2/2+3/2+4/2+...+2023/2
=2+3+4+...+2023/2
=2025.2022/2/2
=1023637,5
tham khảo thôi nha
ta có :
\(\left|x+1\right|+\left|x-1\right|=1+\left|\left(x-1\right)\left(x+1\right)\right|\)
\(\Leftrightarrow\left|x-1\right|\left|x+1\right|-\left|x-1\right|-\left|x+1\right|+1=0\)
\(\Leftrightarrow\left(\left|x-1\right|-1\right)\left(\left|x+1\right|-1\right)=0\Leftrightarrow\orbr{\begin{cases}\left|x-1\right|=1\\\left|x+1\right|=1\end{cases}}\)
\(\Leftrightarrow x\in\left\{-2,0,2\right\}\)
\(a,P=\dfrac{1}{\left(2+1\right)\left(2+1-1\right):2}+\dfrac{1}{\left(3+1\right)\left(3+1-1\right):2}+...+\dfrac{1}{\left(2017+1\right)\left(2017+1-1\right):2}\\ P=\dfrac{1}{2\cdot3:2}+\dfrac{1}{3\cdot4:2}+...+\dfrac{1}{2017\cdot2018:2}\\ P=2\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2017\cdot2018}\right)\\ P=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\right)\\ P=2\left(\dfrac{1}{2}-\dfrac{1}{2018}\right)=2\cdot\dfrac{504}{1009}=\dfrac{1008}{1009}\)
\(b,\) Ta có \(\dfrac{1}{4^2}< \dfrac{1}{2\cdot4};\dfrac{1}{6^2}< \dfrac{1}{4\cdot6};...;\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{\left(2n-2\right)2n}\)
\(\Leftrightarrow VT< \dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{\left(2n-2\right)2n}\\ \Leftrightarrow VT< \dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{\left(2n-2\right)2n}\right)\\ \Leftrightarrow VT< \dfrac{1}{2}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2n-2}-\dfrac{1}{2n}\right)\\ \Leftrightarrow VT< \dfrac{1}{2}\left(1-\dfrac{1}{2n}\right)< \dfrac{1}{2}\cdot\dfrac{1}{2}=\dfrac{1}{4}\)
1.a) (2 + 1)(22 + 1)((24 + 1)(28 + 1) = (22 - 1)(22 + 1)(24 + 1)(28 + 1) = (24 - 1)(24 + 1)(28 + 1)
= (28 - 1)(28 + 1) = 216 - 1
b) 7(23 + 1)(26 + 1)(212 + 1)(224 + 1) = (23 - 1)(23 + 1)(26 + 1)(212 + 1)(224 + 1)
= (26 - 1)(26 + 1)(212 + 1)(224 + 1) = (212 - 1)(212 + 1)(224 + 1) = (224 - 1)(224 + 1) = 248 - 1
c) (x2 - x + 1)(x2 + x + 1)(x2 - 1) = [(x2 - x + 1)(x + 1)][(x2 + x + 1)(x - 1)] = (x3 + 1)(x3 - 1) = x6 - 1
2. Đặt A = 4x - x2 - 1 = -(x^2 - 4x + 4) + 3 = -(x - 2)2 + 3 \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy MaxA = 3 khi x = 2
a) bằng 9 nha bạn
b) thì mik ko bik làm.
Đúng thì bạn tim giúp mik nha bạn. Thx bạn
\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right).....\left(1-\dfrac{1}{2008^2}\right)\)
\(=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}....\dfrac{2008^2-1}{2008^2}\)
\(=\dfrac{1.3}{4}.\dfrac{2.4}{9}.\dfrac{3.5}{16}....\dfrac{2007.2009}{2008^2}\)
\(=\left(\dfrac{1.2.3...2007}{2.3.4....2008}\right).\dfrac{3.4.5...2009}{2.3.4...2008}\)
\(=\dfrac{1}{2008}.\dfrac{2009}{2}=\dfrac{2009}{4016}\)
15 nha bạn ơi
15 nha bạn