K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2017

\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{97.96}+......+\frac{1}{2.1}\)

\(= \frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}\right)\)

\(= \frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}\right)\)

\(= \frac{1}{99}-\left(1-\frac{1}{99}\right)\)

\(= \frac{1}{99}-\frac{98}{99}\)

\(= \frac{-97}{99}\)

13 tháng 5 2017

\(\dfrac{-1}{100\cdot99}+\dfrac{-1}{99\cdot98}+\dfrac{-1}{98\cdot97}+...+\dfrac{-1}{3\cdot2}+\dfrac{-1}{2\cdot1}\\ \left(-1\right)\cdot\left(\dfrac{1}{100\cdot99}+\dfrac{1}{99\cdot98}+\dfrac{1}{98\cdot97}+...+\dfrac{1}{3\cdot2}+\dfrac{1}{2\cdot1}\right)\\ =\left(-1\right)\cdot\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\\ =\left(-1\right)\cdot\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =\left(-1\right)\cdot\left(1-\dfrac{1}{100}\right)\\ =\left(-1\right)\cdot\dfrac{99}{100}\\ =\dfrac{-99}{100}\)

23 tháng 3 2017

A<B

23 tháng 3 2017

Làm thế nào vậy bn? Bn giải chi tiết đc ko?

13 tháng 2 2017

Ghi rõ hơn chút nhé , mình không hiểu gì hết

13 tháng 2 2017

quá rõ òi kn rì

13 tháng 6 2017

{78} \in Q nhé bạn!

13 tháng 6 2017

\(\left\{78\right\}\in Q\)

30 tháng 6 2017

Ta có (p - 1)p(p + 1) \(⋮\)3 mà p không chia hết cho 3

=> (p - 1) (p + 1) \(⋮\) 3 (1)

p là số nguyên tố lớn hơn 3 nên p là số lẻ, p - 1 và p + 1 là hai số chẵn liên tiếp=> (p-1)(p+1)\(⋮\)8 (2)

Vì 24= 3.8 nên từ (1) và (2) = (p-1)(p+1) \(⋮\) 24

30 tháng 6 2017

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

4 tháng 5 2017

\(\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}=\dfrac{2.\left[\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right]}{4.\left[\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right]}\)\(=\dfrac{2}{4}=\dfrac{1}{2}\)

\(B=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}=\dfrac{2.\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4.\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{1}{2}\)

23 tháng 3 2017

Gọi \(ƯC\left(12n+1;30n+2\right)=d\)

\(\Rightarrow12n+1⋮d\Rightarrow60n+5⋮d\)

\(30n+2⋮d\Rightarrow60n+ 4⋮d\)

Do đó \(60n+5-60n-4⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản.

23 tháng 3 2017

Gọi (12n+1),(30n+2) là d (1)

=>30n+2 \(⋮\) d

=> 2(30n + 2) \(⋮\) d hay 60n +4 \(⋮\) d

Tương tự ta chưng minh:

12n + 1 \(⋮\)d (2)

=> 5(12n+1) \(⋮\) d hay 60n +5 \(⋮\)d

Do đó (60n + 5) - ( 60n +4 ) \(⋮\)d hay 1 \(⋮\) d

=> d = 1 hoặc -1

Từ (1) và(2) ta có( 12n+1 ;30n+2) =1

=> P/s 12n + 1 /30n+2 là ps tối giản