K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right).......\left(1+\frac{1}{100}\right)\)

\(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}......\frac{101}{100}\)

\(\frac{3.4.5....101}{2.3.4.....100}\)

\(\frac{101}{2}\)

9 tháng 4 2018

(1+1/2)(1+1/3)(1+1/4)+...+(1+1/100)

=3/2*4/3*5/4*...*101/100

=101/2

=50,5

29 tháng 4 2018

mình đánh thiếu đề bài ở cuối còn có ''So sánh A với \(-\frac{1}{2}\)

15 tháng 8 2016

\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot...\cdot\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{99}{100}\)

\(=\frac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\)

\(=\frac{1}{100}\)

15 tháng 8 2016

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)=\frac{2-1}{2}.\frac{3-1}{3}.\frac{4-1}{4}...\frac{100-1}{100}=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}=\frac{1}{100}\)

25 tháng 3 2020

1, =\(\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}=\frac{1}{2}\)

2, A=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)

\(\frac{1\cdot2\cdot3\cdot....\cdot99}{2\cdot3\cdot4\cdot...\cdot100}=\frac{1}{100}\)

Vậy ......

hok tốt

22 tháng 11 2017

sfdsa

22 tháng 11 2017

VÌ 1/1.1/3.......1/99=2/51.2/52.........2/100

VÀ   2/51.2/52.....2/100=1/1.1/3.......1/99

SUY RA BẰNG NHAU

22 tháng 3 2018

\(D=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

\(D=\left(\frac{3}{2\cdot2}\right)\left(\frac{8}{3\cdot3}\right)\left(\frac{15}{4\cdot4}\right)...\left(\frac{9999}{100\cdot100}\right)\)

\(D=\frac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(99\cdot101\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(100\cdot100\right)}\)

\(D=\frac{\left(1\cdot2\cdot3\cdot...\cdot99\right)\left(3\cdot4\cdot5\cdot...\cdot101\right)}{\left(2\cdot3\cdot4\cdot...\cdot100\right)\left(2\cdot3\cdot4\cdot...\cdot100\right)}\)

\(D=\frac{1\cdot101}{100\cdot2}\)

\(=\frac{101}{200}\)

22 tháng 3 2018

\(D=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\cdot\cdot\cdot\left(\frac{1}{100^2}-1\right)\)(có 50 thừa số nên tích đó là số dương)

\(\Rightarrow D=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\cdot\cdot\cdot\left(\frac{100^2-1}{100^2}\right)\)

\(D=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\cdot\cdot\frac{99\cdot101}{100^2}\)

\(D=\frac{101}{2\cdot100}=\frac{101}{200}\)

17 tháng 3 2016

Ta có: 

\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1}{2}.\frac{4}{6}.\frac{9}{12}....\frac{9801}{9900}.\frac{10000}{10100}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}=\frac{1.2.3...99.100}{2.3.4...100.101}=\frac{1}{101}\)(Tối giản)

27 tháng 2 2016

Ta có : \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{100}\right)\)

\(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}.\frac{101}{100}\)

\(\frac{3.4.5...100.101}{2.3.4...99.100}\)

\(\frac{101}{2}\)

27 tháng 2 2016

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{101}{100}\)

\(=\frac{101}{2}\)

Ngẩm nghĩ một lát sẽ ra

Nhớ duyệt nha

5 tháng 4 2017

ta gọi \(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\)là A

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(\Leftrightarrow1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\right)\)

\(\Rightarrow A=1-\frac{1}{10}=\frac{9}{10}\)

ta gọi B là biểu thức thứ2

\(B=\frac{2.2}{3}\times\frac{3.3}{2.4}\times\frac{4.4}{3.5}\times...\times\frac{10.10}{9.11}\)

\(\Rightarrow\)2 x \(\frac{10}{11}\)\(=\frac{20}{11}\)

\(\Rightarrow\)\(x+\frac{9}{10}=\frac{20}{11}+\frac{9}{110}\)

\(\Rightarrow x=1\)

mk nghĩ vậy bạn ạ, mk mong nó đúng