Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1 : lần trước mình giải
C2 : mình không chắc thử xem
thay x= 9 vao F ta có
F = 9^14 - 10 .9^13 + 10.9^12 - 10 .9^11 + ... +10.9^2 -10.9 + 10
= 9^14 - ( 9 + 1 ) . 9^13 + (9+1). 9^12+..+(9+1) .9^2 - (9+1)9 +10
= 9^14 - 9^14 - 9^13 + 9^13 + 9^12 -.....+9^3 + 9^2 - 9^2 - 9 + 10 = 1
Tương tự vói G , H
Áp dụng \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\) (a;b;c \(\in\) N*)
Ta có:
\(B=\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}\)
\(B< \frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
=> A > B
Ta thấy:A=\(\frac{10^{19}+1}{10^{20}+1}\)=>10A=\(\frac{10^{20}+10}{10^{20}+1}\)
=>10A=\(\frac{10^{20}+1+9}{10^{20}+1}\)
=>10A=1+\(\frac{9}{10^{20}+1}\)
Ta thấy:B=\(\frac{10^{20}+1}{10^{21}+1}\)
=>10B=\(\frac{10^{21}+10}{10^{21}+1}\)
=>10B=\(\frac{10^{21}+1+9}{10^{21}+1}\)
=>10B=1+\(\frac{9}{10^{21}+1}\)
Do \(\frac{9}{10^{20}+1}\)> \(\frac{9}{10^{21}+1}\)=>A > B
\(\frac{-5}{9}x+1=\frac{2}{3}x-10\)
\(\frac{-5}{9}x+\frac{9}{9}=\frac{6}{9}x-\frac{90}{9}\)
\(-5x+9=6x-90\)
\(-5x-6x=-90-9\)
\(-11x=-99\)
\(x=\frac{-99}{-11}=9\)
b. \(\frac{x-22}{8}+\frac{x-21}{9}+\frac{x-20}{10}+\frac{x-19}{11}=4\)
\(\frac{x-22}{8}-1+\frac{x-21}{9}-1+\frac{x-20}{10}-1+\frac{x-19}{11}-1=0\)
\(\frac{x-30}{8}+\frac{x-30}{9}+\frac{x-30}{10}+\frac{x-30}{11}=0\)
\(\left(x-30\right)\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)=0\)
x=30
Chúc bạn học tốt!!
a) n(n+2)
b) (3n-2)3n
c) ( 1) 1 n n 2
d) 1+n2 e) n(n+5)
f) (3n-2)(3n+1)
g) n ( n 3) 2 n n
h) ( 1)( 2) 2
i) n ( n 1)( n 2)
\(\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+...+\frac{x}{10}=\frac{21}{10}\)
\(\frac{1}{10}\left(1+2+3+...+x\right)=\frac{21}{10}\)
\(1+2+3+...+x=21\)
\(\left(1+x\right).x:2=21\)
\(\left(1+x\right).x=42\)
\(x\left(1+x\right)=6.7\)
\(\Rightarrow x=6\)