K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 10 2021

Lời giải:

\(\lim\limits_{x\to 2-}y=\lim\limits_{x\to 2-}\frac{\sqrt{4-x^2}}{(x-2)(x-3)}=\lim\limits_{x\to 2-}\frac{\sqrt{2+x}}{\sqrt{2-x}(x-3)}=-\infty \) nên $x=2$ là TCĐ 

Vì \(x\in [-2;2)\) nên không tồn tại \(\lim\limits_{x\to +\infty }y\) nên đths không có TCN 

Còn $x=3$ không thể là TCĐ vì tại $x=3$ thì $\sqrt{4-x^2}$ không tồn tại .

 

AH
Akai Haruma
Giáo viên
9 tháng 10 2021

Đáp án A

1 + 1 = 2

Thẹc là mụt cou hỏi khó :"<

@Nghệ Mạt

#cua

1+1=2

ui khó thiệt á chắc tui làm sai mất

3 tháng 6 2019

1+1=2

2+1=3

2+2=4

1+2=3

3+1=4

3+2=5

học tốt !!!!!

NV
23 tháng 5 2021

Đề bài liệu có chính xác không nhỉ? Mình chỉ có thể tìm được max bằng \(2\sqrt{2}\) (xảy ra khi \(lnx=\sqrt{2}\) và \(lny=\dfrac{1}{2}\)) và ko thể tìm được min.

NV
23 tháng 5 2021

À rồi OK, suy nghĩ hơi cồng kềnh 1 xíu nên hướng tìm min bị sai:

Giả thiết tương đương: \(y^{\sqrt{4-ln^2x}}=x^{1-lny}\)

\(\Rightarrow\sqrt{4-ln^2x}.lny=\left(1-lny\right)lnx\) (1)

Do \(y\ne1\Rightarrow lny\ne0\)

Nên (1) tương đương: \(\sqrt{4-ln^2x}=\left(\dfrac{1-lny}{lny}\right)lnx\) (2)

Đặt \(\left\{{}\begin{matrix}lnx=a\\lny=b\end{matrix}\right.\) thì \(log_yx=\dfrac{a}{b}\)

(2) trở thành: \(\sqrt{4-a^2}=\left(\dfrac{1-b}{b}\right)a\)

\(\Rightarrow\sqrt{4-a^2}=\dfrac{a}{b}-a\Rightarrow\dfrac{a}{b}=\sqrt{4-a^2}+a\)

Xét hàm \(f\left(a\right)=\sqrt{4-a^2}+a\) trên \(\left[-2;2\right]\)

\(f'\left(a\right)=1-\dfrac{a}{\sqrt{4-a^2}}=0\Rightarrow a=\sqrt{2}\)

\(f\left(-2\right)=-2\) ; \(f\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(f\left(2\right)=2\)

\(\Rightarrow f\left(a\right)_{min}=-2\) ; \(f\left(a\right)_{max}=2\sqrt{2}\)

Đáp án B

3 tháng 10 2023

Đây là công thức bạn phải thuộc lòng, còn b là số lớn 0 và khác 1, tùy vào bài tập bạn giải sẽ có số b hợp lý.

3 tháng 10 2023

ví dụ log12 18= log2 18/log2 12. vậy thì số 2 này từ đâu mà có vậy ạ?

12 tháng 9 2019

nếu đề đúng

\(f'\left(x\right)=\frac{3}{2}x^2+m^2-4\)

\(f''\left(x\right)=3x\)

Để f(x) đạt cực đại tại x=1 <=> \(\hept{\begin{cases}f'\left(1\right)=0\\f''\left(1\right)< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{3}{2}+m^2-4=0\\3.1< 0\end{cases}}\)vô lí

Vậy ko tồn tại m

8 tháng 12 2021

còn cái nịt

 

8 tháng 12 2021

Không giải hộ thì thôi đừng có mà ăn nói như thế :))