Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x-1 / x =y- 1/ y <=>(x^2 -1)/x = (y^2 -1)/y => (X^2 - 1) y = (y^2 -1)x => (x-y)( xy +1) =0 => x = y hoac y = -1/x
voi x= y => 2x = x^3 +1 => bam may tinh giai ra 3 nghiem
voi y = -1/x thay vao ta dc -2/x = x^3 +1 => pt vo nghiem vay pt co 3 nghiem , nho dat dkcho x,y # 0 nha
\(3x^2+2x-1=0\)
\(\Rightarrow3x^2+3x-x-1=0\)
\(\Rightarrow3x.\left(x+1\right)-\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right).\left(3x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{-1;\dfrac{1}{3}\right\}\)
Chúc bạn học tốt nha!!!
Em làm bài này không chắc lắm! Nếu sai thì em xin lỗi anh Hoàng nha! Chưa thấy ai làm em làm đó nha!!!
Bài làm:
\(3x^2+2x-1=0\\ < =>x^2+2x^2+2x+1-2=0\\ < =>\left(x^2+2x+1\right)+\left(2x^2-2\right)=0\\ < =>\left(x+1\right)^2+2\left(x-1\right)\left(x+1\right)=0\\ < =>\left(x+1\right)\left(x+1+2\left(x-1\right)\right)=0\\ < =>\left(x+1\right)\left(x+1+2x-2\right)=0\\ < =>\left(x+1\right)\left(3x-1\right)=0\\ =>\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Lời giải:
Theo nhị thức New-ton:
\((x+1)^{2n}=C^{0}_{2n}+C^{1}_{2n}x+C^2_{2n}x^2+...+C^{2n}_{2n}x^{2n}\)
\((x-1)^n=C^0_{2n}-C^1_{2n}x+C^2_{2n}x^2-.....-C^{2n-1}_{2n}x^{2n-1}+C^{2n}_{2n}x^{2n}\)
Trừ theo vế ta có:
\(\frac{(x+1)^{2n}-(x-1)^{2n}}{2}=C^1_{2n}x+C^3_{2n}x^3+...+C^{2n-1}_{2n}x^{2n-1}\)
\(\Rightarrow \int ^{1}_{0}\frac{(x+1)^{2n}-(x-1)^{2n}}{2}dx=\int ^{1}_{0}(C^1_{2n}x+C^3_{2n}x^3+...+C^{2n-1}_{2n}x^{2n-1})dx\)
Xét vế trái:
\(\text{VT}=\frac{1}{2}\int ^{1}_{0}(x+1)^{2n}d(x+1)-\frac{1}{2}\int ^{1}_{0}(x-1)^{2n}d(x-1)\)
\(=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{1}{2}\left ( \frac{(x+1)^{2n+1}-(x-1)^{2n+1}}{2n+1} \right )=\frac{2^{2n}-1}{2n+1}\)
Xét vế phải:
\(\text{VP}=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{C^{1}_{2n}x^2}{2}+\frac{C^{3}_{2n}x^4}{4}+....+\frac{C^{2n-1}_{2n}x^{2n}}{2n} \right )=\frac{1}{2}C^{1}_{2n}+\frac{1}{4}C^3_{2n}+...+\frac{1}{2n}C^{2n-1}_{2n}\)
Vậy \(A=\frac{2^{2n}-1}{2n+1}\)
Lời giải:
Ta có:
\(\log_2(x+4)+2\log_4(x+2)=2\log_{\frac{1}{2}}\frac{1}{8}=6\)
\(\Leftrightarrow 2\log_4(x+4)+2\log_4(x+2)=6\)
\(\Leftrightarrow \log_4(x+4)+\log_4(x+2)=3\)
\(\Leftrightarrow \log_4[(x+2)(x+4)]=3\)
\(\Leftrightarrow (x+2)(x+4)=4^3=64\)
\(\Leftrightarrow x^2+6x-56=0\)
\(\Leftrightarrow x=-3\pm \sqrt{65}\)
Kết hợp với ĐKXĐ ta suy ra \(x=-3+\sqrt{65}\) là nghiệm của pt
bạn ơi mình hỏi tí, sao log\(^{\left(x+4\right)}_2=2log^{\left(x+4\right)}_4\)
Theo Viet: \(\left\{{}\begin{matrix}z_1+z_2=2i\\z_1z_2=-1-2i\end{matrix}\right.\)
\(\Rightarrow z_1^3+z_2^3=\left(z_1+z_2\right)\left(z_1^2+z_2^2-z_1z_2\right)=\left(z_1+z_2\right)\left(\left(z_1+z_2\right)^2-3z_1z_1\right)\)
\(=2i\left[\left(2i\right)^2-3\left(-1-2i\right)\right]=2i\left(6i-1\right)=-12-2i\)
1+1=2 mãi mãi vẫn là 2 , ai kêu sai là do người đó ngu tính sai thôi
chúc bạn học tốt
toán lớp 12 :)))))))